Skip to main content

Python Fractal Generation is a package for generating aesthetic fractal images quickly and (hopefully) easily

Project description

Authors

  • Ryther Anderson

Description

Python Fractal Generation is a package for making interesting/aesthetic fractal images quickly and (hopefully) easily. A multitude of unique fractals (from various views) can be generated using only a few functions. Each fractal generation function returns a result object containing an array of floats that can be converted into an image, the desired width/height in inches, and the number of pixels per inch. This result object can be passed to various image creation functions that assign colors to the fractal array based on a colormap (or creates RGB channels from the array).

Installation

pyfracgen can currently be installed from the following sources:

Git

git clone https://github.com/rytheranderson/pyfracgen.git
cd pyfracgen
pip install .

PyPi

pip install pyfracgen

Example Images

All the package functions can be accessed from a single import:

import pyfracgen as pf
from matplotlib import pyplot as plt

Mandelbrot Set

Image produced with this code:

# x and y boundaries, x being the real part and y being the imaginary part in the complex plane
xbound = (0.3602404434376143632361252444495 - 0.00000000000003,
          0.3602404434376143632361252444495 + 0.00000000000025)
ybound = (-0.6413130610648031748603750151793 - 0.00000000000006,
          -0.6413130610648031748603750151793 + 0.00000000000013)

mymap = pf.images.stack_cmaps(plt.cm.gist_gray, 50)
man = pf.mandelbrot(xbound, ybound, pf.updates.power, width=4, height=3, maxiter=5000, dpi=300)
pf.images.image(man, cmap=mymap, gamma=0.8)
plt.savefig('example_images/mandelbrot_ex.png')

Julia Set Animation

Animation produced with this code:

c_vals = np.array([complex(i, 0.75) for i in np.linspace(0.05, 3.0, 100)])
s = pf.julia_series(c_vals, (-1, 1), (-0.75, 1.25), pf.updates.magnetic_2, maxiter=100,
                    width=4, height=3, dpi=200)
pf.images.save_animation(s, gamma=0.9, cmap=plt.cm.gist_ncar,
                         filename='example_images/julia_animation_ex')

Markus-Lyapunov Fractal

Image produced with this code:

im = pf.lyapunov(string, xB, yB, maxiter=80, dpi=300, width=4, height=3)
pf.images.image(im, gamma=3.0, vert_exag=10000.0, cmap=plt.cm.gray)
plt.savefig('example_images/lyapunov_ex.png')

Random Walk

Image produced with this code:

basis = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
moves = pf.construct_moves(basis)
M = pf.random_walk(moves, 5000000, width=4, height=3, depth=1, dpi=300, displacement=0.0,
                   tracking='temporal')
pf.images.random_walk_image(M, cmap=plt.cm.gist_yarg, gamma=1.0, single_color=False)
plt.savefig('example_images/random_walk_ex.png')

Buddhabrot with Nebula Coloring

Image produced with this code:

xbound = (-1.75, 0.85)
ybound = (-1.10, 1.10)

cvals = pf.compute_cvals(1000000, xbound, ybound, pf.updates.power, width=4, height=3, dpi=300)
bud0 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=100,
                     width=5, height=4, dpi=300)
bud1 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=1000,
                     width=5, height=4, dpi=300)    
bud2 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=10000,
                     width=5, height=4, dpi=300)

pf.images.nebula_image(bud0, bud1, bud2, gamma=0.4)
plt.savefig('example_images/buddhabrot_ex.png')

Current Status

There are functions for Mandelbrot and Julia set generation, image and animation creation. There is a function for Buddhabrot generation and a function for the "nebula" coloring of the Buddhabrot. There is a class for creating and visualizaing 2- and 3-dimensional random walks. The most recent addition is a function for generating Markus-Lyapunov fractals, with a special image function for the "classic" blue/green coloring.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfracgen-0.0.3.tar.gz (18.8 MB view details)

Uploaded Source

Built Distribution

pyfracgen-0.0.3-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file pyfracgen-0.0.3.tar.gz.

File metadata

  • Download URL: pyfracgen-0.0.3.tar.gz
  • Upload date:
  • Size: 18.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyfracgen-0.0.3.tar.gz
Algorithm Hash digest
SHA256 161148bd37573c3ab836aa0cb9eb6e6eff15dd3de378016a584390f784e29fa8
MD5 2fa52cb75252fd1918f484b9c4379e34
BLAKE2b-256 1e308770e35a415814596f3e31b9901a94b545fd63901139a4eb448220a806a9

See more details on using hashes here.

Provenance

File details

Details for the file pyfracgen-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pyfracgen-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyfracgen-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 014ce25409538d9887ad2d322eb529390994dcfd171acacfcc03ca81b4ea36eb
MD5 9c93db4d9ca372908b6b20c5fca463d6
BLAKE2b-256 7e8099959ee12af19cca5202f513149bfd8479eeb5dd94e9c9ea57d7f0e08049

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page