Skip to main content

Frechet Distance Python Library

Project description

pyfrechet

Frechet Distance Python Library

pyfrechet is a Python 3 library intended to visualize free space, discover paths and manage information for the Frechet distance. This library derives its work from Frechet distance decision problem 1.0 and Weak Frechet distance decision problem 1.0, two programs written by Dr. Carola Wenk. The library open source design allows for new programs to be added and build upon existing ones.

Installation

Download from Python Package Index using the command line below.

pip install pyfrechet

Documentation

A GUI version of the source code documentation can be viewed by opening documentation.html. The GUI is generated by Doxygen and supporting packages can be found in /docs.

Dependencies

  • CFFI allows source code written in C to be compiled as .so files.
  • NumPy is used to calculate dimentions of free space diagrams.
  • Free space diagrams are stored using Shapleys Polygon and Multipolygon classes.
  • The GUI of the free space diagram is built using matplotlib.

Examples

Below are several examples how the library can be used.

Creating empty Frechet and Weak Frechet distance objects:

example .py

from pyfrechet.distance import StrongDistance, WeakDistance

strong_distance = StrongDistance()
print(strong_distance)

weak_distance = WeakDistance()
print(weak_distance)

output

                Frechet Distance       |  StrongDistance
                ========================================
                Curve 1 File           |  N/A
                Curve 2 File           |  N/A


                Frechet Distance       |  WeakDistance
                ========================================
                Curve 1 File           |  N/A
                Curve 2 File           |  N/A

Creating Frechet and Weak Frechet distance objects with two curves:

sample_1.txt

484472 4.21292e+006
484183 4.21293e+006
484166 4.21314e+006
484140 4.21347e+006

... ...

483379 4.21391e+006
483389 4.21385e+006
483349 4.21362e+006
483280 4.21325e+006

sample_2.txt

483282.000000 4213251.000000
483281.000000 4213333.000000
483279.000000 4213347.000000
483278.000000 4213393.000000

... ...

484152.172363 4212991.013613
484137.000000 4212937.000000
484326.000000 4212933.000000
484462.000000 4212918.000000

example .py

from pyfrechet.distance import StrongDistance, WeakDistance

strong_distance = StrongDistance.setCurves(curve_1_file="sample_1.txt", \
                                           curve_2_file="sample_2.txt", \
                                           reverse_curve_2=True)
print(strong_distance)

weak_distance = WeakDistance.setCurves(curve_1_file="sample_1.txt", \
                                       curve_2_file="sample_2.txt", \
                                       reverse_curve_2=True)
print(weak_distance)

output

                Frechet Distance       |  StrongDistance
                ========================================
                Curve 1 File           |  curve_1_file.txt
                Curve 2 File           |  curve_2_file.txt


                Frechet Distance       |  WeakDistance
                ========================================
                Curve 1 File           |  curve_1_file.txt
                Curve 2 File           |  curve_2_file.txt

Accessing curve file data:

example .py

from pyfrechet.distance import StrongDistance

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)
curve_1_lenght = strong_distance.getCurve1Lenght()
curve_1 = strong_distance.getCurve1()

print(f"Curve 1 lenght: {curve_1_lenght}")
print(f"First coordinates of curve 1: ({curve_1[0].x}, {curve_1[0].y})")

output

Curve 1 lenght: 59
First coordinates of curve 1: (483282.000000,  4213251.000000)

Checking if path exists inside free space:

example .py

from pyfrechet.distance import StrongDistance

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)

strong_distance.setFreeSpace(epsilon=50)
is_path = strong_distance.isReachable()
print(f"Path exists for epsilon 50: {is_path}")

strong_distance.setFreeSpace(epsilon=100)
is_path = strong_distance.isReachable()
print(f"Path exists for epsilon 100: {is_path}")

output

Path exists for epsilon 50: False
Path exists for epsilon 100: True

Finding minimum epsilon for path using default binary search:

example .py

from pyfrechet.distance import StrongDistance
from pyfrechet.optimise import BinarySearch

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)

binary_search = BinarySearch(strong_distance)
epsilon = binary_search.search()

print(f"Epsilon found using binary search: {epsilon}")

output

Checking if epsilon is reachable:
    | 0 -- 6986.0 -- 13972 |
    Eps 6986.0: <reachable>

Checking if epsilon is reachable:
    | 0 -- 3493.0 -- 6986.0 |
    Eps 3493.0: <reachable>

... ...

Checking if epsilon is reachable:
    | 67.7962646484375 -- 68.00946044921875 -- 68.22265625 |
    Eps 68.00946044921875: <unreachable>

Checking if epsilon is reachable:
    | 68.00946044921875 -- 68.11605834960938 -- 68.22265625 |
    Eps 68.11605834960938: <reachable> <meets percision>

Epsilon found using binary search: 68.11605834960938

Finding minimum epsilon for path using custom binary search:

from pyfrechet.distance import StrongDistance
from pyfrechet.optimise import BinarySearch

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)

binary_search = BinarySearch(strong_distance)
binary_search.setBoundaries(left=50, right=100)
binary_search.setPercision(0.0001)
epsilon = binary_search.search()

print(f"Epsilon found using binary search: {epsilon}")

output

Checking if epsilon is reachable:
    | 50 -- 75.0 -- 100 |
    Eps 75.0: <reachable>

Checking if epsilon is reachable:
    | 50 -- 62.5 -- 75.0 |
    Eps 62.5: <unreachable>

... ...

Checking if epsilon is reachable:
    | 67.1875 -- 67.96875 -- 68.75 |
    Eps 67.96875: <unreachable>

Checking if epsilon is reachable:
    | 67.96875 -- 68.359375 -- 68.75 |
    Eps 68.359375: <reachable> <meets percision>

Epsilon found using binary search: 68.359375

Visualizing free space diagram for epsilon:

example .py

from pyfrechet.distance import StrongDistance
from pyfrechet.visualize import FreeSpaceDiagram

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)
strong_distance.setFreeSpace(100)

free_space_diagram = FreeSpaceDiagram(strong_distance)
free_space_diagram.plot()

output File unavailable: figure_1.png

Visualizing free space diagram for epsilon with cell gird lines and weighted cells:

example .py

from pyfrechet.distance import StrongDistance
from pyfrechet.visualize import FreeSpaceDiagram

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)
strong_distance.setFreeSpace(100)

free_space_diagram = FreeSpaceDiagram(strong_distance)
free_space_diagram.plot(cell_gridlines=True, weighted_cells=True)

output File unavailable: figure_2.png

Visualizing free space diagram with sliding bar for epsilon:

example .py

from pyfrechet.distance import StrongDistance
from pyfrechet.visualize import FreeSpaceDiagram

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)

free_space_diagram = FreeSpaceDiagram(strong_distance)
free_space_diagram.addEpsilonSlider(min=50, max=500, step=50)
free_space_diagram.plot(cell_gridlines=True, weighted_cells=True)

output File unavailable: figure_3.gif

Visualizing trajectories:

example .py

from pyfrechet.distance import StrongDistance
from pyfrechet.visualize import Trajectories

strong_distance = StrongDistance.setCurves("sample_1.txt", "sample_2.txt", True)

trajectories = Trajectories(strong_distance)
trajectories.plot()

output File unavailable: figure_2.png

Author

Version History

  • 0.1.13 9-2-2021
  • 0.2.0 10-3-2021 Added Trajectory class to visualize curves.

Lisence

MIT License • Copyright (c) 2021 Computational Geometry @ Tulane

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfrechet-0.2.0.tar.gz (28.7 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page