Skip to main content

Functional collections extension functions for Python

Project description

pyfuncol

CI codecov PyPI Downloads Documentation Status GitHub license

A Python functional collections library. It extends collections built-in types with useful methods to write functional Python code. It uses Forbidden Fruit under the hood.

pyfuncol provides:

  • Standard "eager" methods, such as map, flat_map, group_by, etc.
  • Parallel methods, such as par_map, par_flat_map, etc.
  • Pure methods that leverage memoization to improve performance, such as pure_map, pure_flat_map, etc.
  • Lazy methods that return iterators and never materialize results, such as lazy_map, lazy_flat_map, etc.

pyfuncol can also be used without forbiddenfruit.

Installation

pip install pyfuncol

Usage

Note: If you are not using forbiddenfruit, the functions will not extend the builtins. Please see here for usage without forbiddenfruit.

To use the methods, you just need to import pyfuncol. Some examples:

import pyfuncol

[1, 2, 3, 4].map(lambda x: x * 2).filter(lambda x: x > 4)
# [6, 8]

[1, 2, 3, 4].fold_left(0, lambda acc, n: acc + n)
# 10

{1, 2, 3, 4}.map(lambda x: x * 2).filter_not(lambda x: x <= 4)
# {6, 8}

["abc", "def", "e"].group_by(lambda s: len(s))
# {3: ["abc", "def"], 1: ["e"]}

{"a": 1, "b": 2, "c": 3}.flat_map(lambda kv: {kv[0]: kv[1] ** 2})
# {"a": 1, "b": 4, "c": 9}

pyfuncol provides parallel operations (for now par_map, par_flat_map, par_filter and par_filter_not):

[1, 2, 3, 4].par_map(lambda x: x * 2).par_filter(lambda x: x > 4)
# [6, 8]

{1, 2, 3, 4}.par_map(lambda x: x * 2).par_filter_not(lambda x: x <= 4)
# {6, 8}

{"a": 1, "b": 2, "c": 3}.par_flat_map(lambda kv: {kv[0]: kv[1] ** 2})
# {"a": 1, "b": 4, "c": 9}

pyfuncol provides operations leveraging memoization to improve performance (for now pure_map, pure_flat_map, pure_filter and pure_filter_not). These versions work only for pure functions (i.e., all calls to the same args return the same value) on hashable inputs:

[1, 2, 3, 4].pure_map(lambda x: x * 2).pure_filter(lambda x: x > 4)
# [6, 8]

{1, 2, 3, 4}.pure_map(lambda x: x * 2).pure_filter_not(lambda x: x <= 4)
# {6, 8}

{"a": 1, "b": 2, "c": 3}.pure_flat_map(lambda kv: {kv[0]: kv[1] ** 2})
# {"a": 1, "b": 4, "c": 9}

pyfuncol provides lazy operations that never materialize results:

list([1, 2, 3, 4].lazy_map(lambda x: x * 2).lazy_filter(lambda x: x > 4))
# [6, 8]

list({1, 2, 3, 4}.lazy_map(lambda x: x * 2).lazy_filter_not(lambda x: x <= 4))
# [6, 8]

list({"a": 1, "b": 2, "c": 3}.lazy_flat_map(lambda kv: {kv[0]: kv[1] ** 2}))
# [("a", 1), ("b", 4), ("c", 9)]

set([1, 2, 3, 4].lazy_map(lambda x: x * 2).lazy_filter(lambda x: x > 4))
# {6, 8}

Usage without forbiddenfruit

If you are using a Python interpreter other than CPython, forbiddenfruit will not work.

Fortunately, if forbiddenfruit does not work on your installation or if you do not want to use it, pyfuncol also supports direct function calls without extending builtins.

from pyfuncol import list as pfclist

pfclist.map([1, 2, 3], lambda x: x * 2)
# [2, 4, 6]

API

For lists, please refer to the docs.

For dictionaries, please refer to the docs.

For sets and frozensets, please refer to the docs.

For more details, please have a look at the API reference.

We support all subclasses with default constructors (OrderedDict, for example).

Documentation

See https://pyfuncol.readthedocs.io/.

Compatibility

For functions to extend built-ins, Forbidden Fruit is necessary (CPython only).

Contributing

See the contributing guide for detailed instructions on how to get started with the project.

License

pyfuncol is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfuncol-1.3.1.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

pyfuncol-1.3.1-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file pyfuncol-1.3.1.tar.gz.

File metadata

  • Download URL: pyfuncol-1.3.1.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyfuncol-1.3.1.tar.gz
Algorithm Hash digest
SHA256 14bdfaefde6f99ceb6a182d2f2b32753db9203845005b280e08efce9a9acf441
MD5 c64b1672672f8346cf0a459486274256
BLAKE2b-256 faf863dfbd6765028e45012befb96ae8954f390ba63b8e7c38f032cf1c03e054

See more details on using hashes here.

File details

Details for the file pyfuncol-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: pyfuncol-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyfuncol-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0885b7b5bbb31e5583721a7f92d79538f57ebffac981745cb7ec382763e9f441
MD5 708c4b3d330a2e7ce5f79e90305dc98d
BLAKE2b-256 aadaf0c283e8239dd4b840f4eac04bcf72dffe6f6ba0c667b6d7438223d502d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page