Skip to main content

Functional collections extension functions for Python

Project description

pyfuncol

CI codecov PyPI Downloads Documentation Status GitHub license

A Python functional collections library. It extends collections built-in types with useful methods to write functional Python code. It uses Forbidden Fruit under the hood.

pyfuncol provides:

  • Standard "eager" methods, such as map, flat_map, group_by, etc.
  • Parallel methods, such as par_map, par_flat_map, etc.
  • Pure methods that leverage memoization to improve performance, such as pure_map, pure_flat_map, etc.
  • Lazy methods that return iterators and never materialize results, such as lazy_map, lazy_flat_map, etc.

pyfuncol can also be used without forbiddenfruit.

Installation

pip install pyfuncol

Usage

Note: If you are not using forbiddenfruit, the functions will not extend the builtins. Please see here for usage without forbiddenfruit.

To use the methods, you just need to import pyfuncol. Some examples:

import pyfuncol

[1, 2, 3, 4].map(lambda x: x * 2).filter(lambda x: x > 4)
# [6, 8]

[1, 2, 3, 4].fold_left(0, lambda acc, n: acc + n)
# 10

{1, 2, 3, 4}.map(lambda x: x * 2).filter_not(lambda x: x <= 4)
# {6, 8}

["abc", "def", "e"].group_by(lambda s: len(s))
# {3: ["abc", "def"], 1: ["e"]}

{"a": 1, "b": 2, "c": 3}.flat_map(lambda kv: {kv[0]: kv[1] ** 2})
# {"a": 1, "b": 4, "c": 9}

pyfuncol provides parallel operations (for now par_map, par_flat_map, par_filter and par_filter_not):

[1, 2, 3, 4].par_map(lambda x: x * 2).par_filter(lambda x: x > 4)
# [6, 8]

{1, 2, 3, 4}.par_map(lambda x: x * 2).par_filter_not(lambda x: x <= 4)
# {6, 8}

{"a": 1, "b": 2, "c": 3}.par_flat_map(lambda kv: {kv[0]: kv[1] ** 2})
# {"a": 1, "b": 4, "c": 9}

pyfuncol provides operations leveraging memoization to improve performance (for now pure_map, pure_flat_map, pure_filter and pure_filter_not). These versions work only for pure functions (i.e., all calls to the same args return the same value) on hashable inputs:

[1, 2, 3, 4].pure_map(lambda x: x * 2).pure_filter(lambda x: x > 4)
# [6, 8]

{1, 2, 3, 4}.pure_map(lambda x: x * 2).pure_filter_not(lambda x: x <= 4)
# {6, 8}

{"a": 1, "b": 2, "c": 3}.pure_flat_map(lambda kv: {kv[0]: kv[1] ** 2})
# {"a": 1, "b": 4, "c": 9}

pyfuncol provides lazy operations that never materialize results:

list([1, 2, 3, 4].lazy_map(lambda x: x * 2).lazy_filter(lambda x: x > 4))
# [6, 8]

list({1, 2, 3, 4}.lazy_map(lambda x: x * 2).lazy_filter_not(lambda x: x <= 4))
# [6, 8]

list({"a": 1, "b": 2, "c": 3}.lazy_flat_map(lambda kv: {kv[0]: kv[1] ** 2}))
# [("a", 1), ("b", 4), ("c", 9)]

set([1, 2, 3, 4].lazy_map(lambda x: x * 2).lazy_filter(lambda x: x > 4))
# {6, 8}

Usage without forbiddenfruit

If you are using a Python interpreter other than CPython, forbiddenfruit will not work.

Fortunately, if forbiddenfruit does not work on your installation or if you do not want to use it, pyfuncol also supports direct function calls without extending builtins.

from pyfuncol import list as pfclist

pfclist.map([1, 2, 3], lambda x: x * 2)
# [2, 4, 6]

API

For lists, please refer to the docs.

For dictionaries, please refer to the docs.

For sets and frozensets, please refer to the docs.

For more details, please have a look at the API reference.

We support all subclasses with default constructors (OrderedDict, for example).

Documentation

See https://pyfuncol.readthedocs.io/.

Compatibility

For functions to extend built-ins, Forbidden Fruit is necessary (CPython only).

Contributing

See the contributing guide for detailed instructions on how to get started with the project.

License

pyfuncol is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfuncol-1.3.0.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

pyfuncol-1.3.0-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file pyfuncol-1.3.0.tar.gz.

File metadata

  • Download URL: pyfuncol-1.3.0.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pyfuncol-1.3.0.tar.gz
Algorithm Hash digest
SHA256 bc3dfdfcfe43c5a67f8e3b394d0b5e83b1d3ae1552378f3e2a02289823d88729
MD5 e9b2215284d0fd03abc38345809eb46e
BLAKE2b-256 d0c884fa91ca655ed95758de6fbf05758a119c4262f8d296e4ea1eb4cffc3307

See more details on using hashes here.

File details

Details for the file pyfuncol-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: pyfuncol-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pyfuncol-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5bae871cf61be3200e9a72b9572943a4a5c9721b244ce9ab9a2fd951286f51c3
MD5 7d27d00e5aa704fe4ac8310c934d537a
BLAKE2b-256 c6cc77d69fe5aae15f9d915e31f924f56958451ce2d9991e53c89609aac662fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page