Skip to main content

A Python module to compute multidimensional arrays of evaluated functions.

Project description

<img align="left" src="https://api.travis-ci.org/NiMlr/PyFunctionBases.svg?branch=master">

<img align="right" width="300" height="300" src="https://user-images.githubusercontent.com/39880630/56446422-dc61eb80-6302-11e9-8b46-78c0a9d08420.gif">

# PyFunctionBases
A Python module to compute multi-dimensional arrays of evaluated functions based on Numpy. This module can be used for evaluation of functions, approximation or for feature engineering in machine learning.

Specifically, the module evaluates basis functions on intervals by employing a recursive formula of type
<p align="center">
<img src="https://latex.codecogs.com/gif.latex?f_{n&plus;1}(x)&space;=&space;g(f_n(x),&space;\dots,&space;f_0(x),x)." title="f_{n+1}(x) = g(f_n(x), \dots, f_0(x),x)." />
</p>

This is generalized to the multi-dimensional case by using a tensor product
<p align="center">
<img src="https://latex.codecogs.com/gif.latex?(f_i({x_m}_k),f_j({x_m}_l))&space;\mapsto&space;f_i({x_m}_k)f_j({x_m}_l)" />
</p>

repeatedly on coordinate wise one-dimensional function bases. The code is vectorized over the evalution points
<p align="center">
<img src="https://latex.codecogs.com/gif.latex?x_m&space;\in&space;\mathbb{R}^{num\_dim},&space;m&space;\in&space;\{1,&space;\dots,&space;num\_samples\}" />
</p>

and returns a multi-dimensional array of shape `(num_samples, degree+1, ..., degree+1)`, where `degree`
is the cardinality of the one-dimensional bases omitting a constant function. The following picture shows the two-dimensional case.

<p align="center">
<img width="399" height="323" src="https://user-images.githubusercontent.com/39880630/56447919-80e82b80-630b-11e9-92bd-6d81b0d78946.png">
</p>

Currently, the following functions are available:


| Name | Domain |
|-------|-----------|
| [`standard_poly`](https://en.wikipedia.org/wiki/Polynomial) | `(-Inf, Inf)`|
| [`legendre_poly`](https://en.wikipedia.org/wiki/Legendre_polynomials) | `[-1, 1]`|
| [`legendre_rational`](https://en.wikipedia.org/wiki/Legendre_rational_functions) | `[0, Inf)`|
| [`chebyshev_poly`](https://en.wikipedia.org/wiki/Chebyshev_polynomials#First_kind) | `[-1, 1]`|

Please make sure that your data lies in these domains, checks will be run if desired.

### Contents
[1. Installation](#installation)
[2. Simple usage](#simple-usage)
[3. Where evaluation of polynomials can fail](#where-evaluation-of-polynomials-can-fail)

## Installation
Requirements: `pip3 install numpy`

```bash
pip3 install pyfunctionbases
```


## Simple Usage
Now a simple example using standard polynomials is given. By exchanging the name parameter, you can try different functions.

```python
from pyfunctionbases import RecursiveExpansion
import numpy as np

# create some data to evaluate basis functions on<
num_samples = 1000
num_dim = 2
x = np.random.uniform(low=0.0, high=1.0, size=(num_samples, num_dim))

# create an expansion object where name can be any
# function name, that is in the table below
degree = 10
name = 'standard_poly'
expn = RecursiveExpansion(degree, recf=name)

# evaluate the function, result is of shape (num_samples, degree+1, degree+1)
f_ij = expn.execute(x)

# flatten the result if needed
f_k = f_ij.reshape(num_samples,(degree+1)**num_dim)
```

## Where evaluation of polynomials can fail
When evaluating functions it is easy to encounter numerical pitfalls. For polynomials specifically one can take measures to avoid problems with floating point numbers, e.g. by employing the representation indicated on the right hand side of the equation `c_1*(x**2)+ c_0*x = x*(c_1*x +c_0)`. Generalizing the former, one can avoid unnecessarily large or small numbers during the evaluation that are caused by large powers and which are badly represented by floating point numbers.

In approximation on the other hand, a basis representation like ``[x**n, ..., x**0]`` is useful in search for the right coefficients. This is a case where e.g. Legendre polynomials provide a useful alternative basis, that covers the exact same function space when the same degrees are considered. In the following code snipped, we can observe an example of this.

![approx](https://user-images.githubusercontent.com/39880630/56443826-8d15be00-62f6-11e9-9cc2-43ae51ed8376.gif)

```python
from pyfunctionbases import RecursiveExpansion
import numpy as np
import matplotlib.pyplot as plt

# create some data
samples = 1000
x = np.random.uniform(low=-1.0, high=1.0, size=(samples,))
x.sort()
# evaluate a function to approximate on the data
fvals = np.tanh(x)*np.cos(50*x)

# set some a maximum degree for the polynomials
degree = 50

# initialize the RecursiveExpansion
expnleg = RecursiveExpansion(degree, recf='legendre_poly')
expnstan = RecursiveExpansion(degree, recf='standard_poly')

# compute the basis functions
basisleg = expnleg.execute(x[:, None], prec=1e-6)
basisstan = expnstan.execute(x[:, None], prec=1e-6)

# find the coefficients of the least squares fit
# to the function given the data
solleg = np.linalg.lstsq(basisleg, fvals, rcond=None)
solstan = np.linalg.lstsq(basisstan, fvals, rcond=None)

# plot the result
plt.plot(x, fvals)
plt.plot(x, np.matmul(basisleg, solleg[0]))
plt.plot(x, np.matmul(basisstan, solstan[0]))
plt.show()
```


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfunctionbases-1.6.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

pyfunctionbases-1.6-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file pyfunctionbases-1.6.tar.gz.

File metadata

  • Download URL: pyfunctionbases-1.6.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for pyfunctionbases-1.6.tar.gz
Algorithm Hash digest
SHA256 b0d843c148cfa84ea06f2acc27f4329a8c817bcd8fec09ff9e3f3e60e77f4487
MD5 bed512a7da8e657b28fa963edf180f55
BLAKE2b-256 5c89dca12a44096569ebae753f1454aa5630860107a25d343961be0e6998a8b0

See more details on using hashes here.

File details

Details for the file pyfunctionbases-1.6-py3-none-any.whl.

File metadata

  • Download URL: pyfunctionbases-1.6-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3

File hashes

Hashes for pyfunctionbases-1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 341915298884b182a80dc9e855ff80e15642a51809e3f79c621c5d830e469b45
MD5 c8dfb6d10af641e5b3d96aaa67803c3e
BLAKE2b-256 064e00bfec03ced3f74a6aa367c7985a485796dd06c9bb71ed5b5acd82f7dd82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page