Skip to main content

An easy way to mix together OWL and Jena Fuseki.

Project description

PyFuseki

pyfuseki - An easy way to mix together OWL and Jena Fuseki.

A library that uses Python to connect and manipulate Jena Fuseki, which provides sync and async methods.

By using PyFuseki, you can easily store data from your program into Jena Fuseki, following the ontology model, and then query and parse Jena.


Documentation: https://yubincloud.github.io/pyfuseki/

Source Code: https://github.com/yubinCloud/pyfuseki


Requirements

Python 3.6+

PyFuseki stands on the shoulders of giants:

Installation

$ pip install pyfuseki

---> 100%

Example

  • First, we define the classes of the ontology predesigned:
from pyfuseki.ontology_mapper import rdf_prefix, BaseRdfPrefixEnum
from rdflib import Namespace
from pyfuseki import config

@rdf_prefix
class RdfPrefix(BaseRdfPrefixEnum):
    BrandProject = Namespace(config.COMMON_PREFIX + 'BrandProject')
    Firm = Namespace(config.COMMON_PREFIX + 'Firm')
  • Next, we define the data properties and object properties of the ontology predesigned:
from pyfuseki.ontology_mapper import BaseProperty
from rdflib import Namespace
from pyfuseki import config

yb = Namespace(config.COMMON_PREFIX)

class ObjectProperty(BaseProperty):
    """
    本体中所有Object properties的枚举
    name 为该 property 的 display name, value 为包装了该 property IRI 的 URIRef 对象
    """
    brandAgencyObjectProperty = yb.brandAgencyObjectProperty
    subordinateTo = yb.subordinateTo   # 从属于


class DataProperty(BaseProperty):
    """
    本体中所有Data properties的枚举
    name 为该 property 的 display name, value 为包装了该 property IRI 的 URIRef 对象
    """
    brandAgencyDataProperty = yb.brandAgencyDataProperty
    createTime = yb.createTime
    enName = yb.enName
  • Finally, we can insert data which we collected into Jena Fuseki:
async def insert_test():
    pyfuseki.register.register_common_prefix("http://www.yubin.com/kg/")
    fuseki = AsyncFuseki('http://localhost:3030', 'pyfuseki_db')
    g = Graph()

    """测试整个过程"""
    # RdfUtils.bind_prefixes_to_graph(self.g, [rp.BrandProject, rp.Firm])  # 绑定前缀
    # 假设获取的数据为rev_data
    rev_data = {
        'band_project': '腾讯',
        '所属企业': '深圳市腾讯计算机系统有限公司',
        '成立日期': '1998-11-11',
        '英文名称': 'QQ'
    }
    # 将rev_data转化成RDF三元组并加入graph中
    tencent = rp.BrandProject.val('腾讯')
    RdfUtils.add_dict_to_graph(g, tencent, {
        op.subordinateTo.value: rp.Firm.val('深圳市腾讯计算机系统有限公司'),
        dp.createTime.value: Literal(rev_data['成立日期'], datatype=XSD.date),
        dp.enName.value: Literal(rev_data['英文名称'], datatype=XSD.string)
    })
    print(g)
    # 将graph插入
    await fuseki.insert_graph(g)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfuseki-1.0.1.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

pyfuseki-1.0.1-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file pyfuseki-1.0.1.tar.gz.

File metadata

  • Download URL: pyfuseki-1.0.1.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for pyfuseki-1.0.1.tar.gz
Algorithm Hash digest
SHA256 54a4854b444fd658f499111e01866613f5745e8182281aff4ba452cc9f5fa6f1
MD5 3242e1325c342c32bd9a08d5255680c2
BLAKE2b-256 97ccc6dca43db3b24e52991646f60bc32255c02d2832ea73354679432eee84b1

See more details on using hashes here.

File details

Details for the file pyfuseki-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: pyfuseki-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 21.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for pyfuseki-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4dd1831ba90abd64b4c91be3c6e1ed80f4c7a1ad8c8d7637f4793a85d654b215
MD5 f9933fa330d7bd1bd45c7858df3c7d85
BLAKE2b-256 913fc179bdabf1074c00507203913029e9163ed39242a7611d89632a886b0439

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page