Skip to main content

An easy way to mix together OWL and Jena Fuseki.

Project description

PyFuseki

pyfuseki - An easy way to mix together OWL and Jena Fuseki.

A library that uses Python to connect and manipulate Jena Fuseki, which provides sync and async methods.

By using PyFuseki, you can easily store data from your program into Jena Fuseki, following the ontology model, and then query and parse Jena.


Documentation: https://yubincloud.github.io/pyfuseki/

Source Code: https://github.com/yubinCloud/pyfuseki


Requirements

Python 3.6+

PyFuseki stands on the shoulders of giants:

Installation

$ pip install pyfuseki

---> 100%

Example

  • First, we define the classes of the ontology predesigned:
from pyfuseki.ontology_mapper import rdf_prefix, BaseRdfPrefixEnum
from rdflib import Namespace
from pyfuseki import config

@rdf_prefix
class RdfPrefix(BaseRdfPrefixEnum):
    BrandProject = Namespace(config.COMMON_PREFIX + 'BrandProject')
    Firm = Namespace(config.COMMON_PREFIX + 'Firm')
  • Next, we define the data properties and object properties of the ontology predesigned:
from pyfuseki.ontology_mapper import BaseProperty
from rdflib import Namespace
from pyfuseki import config

yb = Namespace(config.COMMON_PREFIX)

class ObjectProperty(BaseProperty):
    """
    本体中所有Object properties的枚举
    name 为该 property 的 display name, value 为包装了该 property IRI 的 URIRef 对象
    """
    brandAgencyObjectProperty = yb.brandAgencyObjectProperty
    subordinateTo = yb.subordinateTo   # 从属于


class DataProperty(BaseProperty):
    """
    本体中所有Data properties的枚举
    name 为该 property 的 display name, value 为包装了该 property IRI 的 URIRef 对象
    """
    brandAgencyDataProperty = yb.brandAgencyDataProperty
    createTime = yb.createTime
    enName = yb.enName
  • Finally, we can insert data which we collected into Jena Fuseki:
async def insert_test():
    pyfuseki.register.register_common_prefix("http://www.yubin.com/kg/")
    fuseki = AsyncFuseki('http://localhost:3030', 'pyfuseki_db')
    g = Graph()

    """测试整个过程"""
    # RdfUtils.bind_prefixes_to_graph(self.g, [rp.BrandProject, rp.Firm])  # 绑定前缀
    # 假设获取的数据为rev_data
    rev_data = {
        'band_project': '腾讯',
        '所属企业': '深圳市腾讯计算机系统有限公司',
        '成立日期': '1998-11-11',
        '英文名称': 'QQ'
    }
    # 将rev_data转化成RDF三元组并加入graph中
    tencent = rp.BrandProject.val('腾讯')
    RdfUtils.add_dict_to_graph(g, tencent, {
        op.subordinateTo.value: rp.Firm.val('深圳市腾讯计算机系统有限公司'),
        dp.createTime.value: Literal(rev_data['成立日期'], datatype=XSD.date),
        dp.enName.value: Literal(rev_data['英文名称'], datatype=XSD.string)
    })
    print(g)
    # 将graph插入
    await fuseki.insert_graph(g)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfuseki-1.0.3.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

pyfuseki-1.0.3-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file pyfuseki-1.0.3.tar.gz.

File metadata

  • Download URL: pyfuseki-1.0.3.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for pyfuseki-1.0.3.tar.gz
Algorithm Hash digest
SHA256 7073e5c8ac2809275ad0a69a6493da8aa40ef01bffc940a96af85d0653da8c16
MD5 93f82ff3a37e35b0b3ca18b369625b43
BLAKE2b-256 5ced844b88f714a2ff1e31e77fb6828e22063a46621d77853a75b4b9c12bcd1a

See more details on using hashes here.

File details

Details for the file pyfuseki-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: pyfuseki-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 21.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for pyfuseki-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6c11511ddd438f7e38bc1923cec3ff2756075b1ba09aa33a59ee3c8f9d6cc1e6
MD5 90553213091cab0c69eed6058046ffff
BLAKE2b-256 be74d1978b12c3ced7ccbb809edecd30789d46b3f278ae7b6ac608ee6ed7a4c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page