Skip to main content

a fuzzy logic control library in Python

Project description

fuzzylite

pyfuzzylite 8.0.3

A Fuzzy Logic Control Library in Python

by Juan Rada-Vilela, PhD

License: GPL v3 License: Paid Coverage Status
Build Test Publish

FuzzyLite

The FuzzyLite Libraries for Fuzzy Logic Control refer to fuzzylite (C++), pyfuzzylite (Python), and jfuzzylite (Java).

The goal of the FuzzyLite Libraries is to easily design and efficiently operate fuzzy logic controllers following an object-oriented programming model with minimal dependency on external libraries.

License

pyfuzzylite is dual-licensed under the GNU GPL 3.0 and under a proprietary license for commercial purposes.

You are strongly encouraged to support the development of the FuzzyLite Libraries by purchasing a license of QtFuzzyLite.

QtFuzzyLite is the best graphical user interface available to easily design and directly operate fuzzy logic controllers in real time. Available for Windows, Mac, and Linux, its goal is to significantly speed up the design of your fuzzy logic controllers, while providing a very useful, functional and beautiful user interface. Please, download it and check it out for free at fuzzylite.com/downloads.

Install

pip install pyfuzzylite

Features

Documentation: fuzzylite.github.io/pyfuzzylite/

(6) Controllers: Mamdani, Takagi-Sugeno, Larsen, Tsukamoto, Inverse Tsukamoto, Hybrid

(25) Linguistic terms: (5) Basic: Triangle, Trapezoid, Rectangle, Discrete, SemiEllipse. (8) Extended: Bell, Cosine, Gaussian, GaussianProduct, PiShape, SigmoidDifference, SigmoidProduct, Spike. (7) Edges: Arc, Binary, Concave, Ramp, Sigmoid, SShape, ZShape. (3) Functions: Constant, Linear, Function. (2) Special: Aggregated, Activated.

(7) Activation methods: General, Proportional, Threshold, First, Last, Lowest, Highest.

(9) Conjunction and Implication (T-Norms): Minimum, AlgebraicProduct, BoundedDifference, DrasticProduct, EinsteinProduct, HamacherProduct, NilpotentMinimum, LambdaNorm, FunctionNorm.

(11) Disjunction and Aggregation (S-Norms): Maximum, AlgebraicSum, BoundedSum, DrasticSum, EinsteinSum, HamacherSum, NilpotentMaximum, NormalizedSum, UnboundedSum, LambdaNorm, FunctionNorm.

(7) Defuzzifiers: (5) Integral: Centroid, Bisector, SmallestOfMaximum, LargestOfMaximum, MeanOfMaximum. (2) Weighted: WeightedAverage, WeightedSum.

(7) Hedges: Any, Not, Extremely, Seldom, Somewhat, Very, Function.

(3) Importers: FuzzyLite Language fll. With fuzzylite: Fuzzy Inference System fis, Fuzzy Control Language fcl.

(7) Exporters: Python, FuzzyLite Language fll, FuzzyLite Dataset fld. With fuzzylite: C++, Java, FuzzyLite Language fll, FuzzyLite Dataset fld, R script, Fuzzy Inference System fis, Fuzzy Control Language fcl.

(30+) Examples of Mamdani, Takagi-Sugeno, Tsukamoto, and Hybrid controllers from fuzzylite, Octave, and Matlab, each included in the following formats: py, fll, fld. With fuzzylite: C++, Java, R, fis, and fcl.

Examples

FuzzyLite Language

# File: examples/mamdani/ObstacleAvoidance.fll
Engine: ObstacleAvoidance
InputVariable: obstacle
  enabled: true
  range: 0.000 1.000
  lock-range: false
  term: left Ramp 1.000 0.000
  term: right Ramp 0.000 1.000
OutputVariable: mSteer
  enabled: true
  range: 0.000 1.000
  lock-range: false
  aggregation: Maximum
  defuzzifier: Centroid 100
  default: nan
  lock-previous: false
  term: left Ramp 1.000 0.000
  term: right Ramp 0.000 1.000
RuleBlock: mamdani
  enabled: true
  conjunction: none
  disjunction: none
  implication: AlgebraicProduct
  activation: General
  rule: if obstacle is left then mSteer is right
  rule: if obstacle is right then mSteer is left
# Python
import fuzzylite as fl

engine = fl.FllImporter().from_file("examples/mamdani/ObstacleAvoidance.fll")

Python

import fuzzylite as fl

engine = fl.Engine(
    name="ObstacleAvoidance",
    input_variables=[
        fl.InputVariable(
            name="obstacle",
            minimum=0.0,
            maximum=1.0,
            lock_range=False,
            terms=[fl.Ramp("left", 1.0, 0.0), fl.Ramp("right", 0.0, 1.0)],
        )
    ],
    output_variables=[
        fl.OutputVariable(
            name="mSteer",
            minimum=0.0,
            maximum=1.0,
            lock_range=False,
            lock_previous=False,
            default_value=fl.nan,
            aggregation=fl.Maximum(),
            defuzzifier=fl.Centroid(resolution=100),
            terms=[fl.Ramp("left", 1.0, 0.0), fl.Ramp("right", 0.0, 1.0)],
        )
    ],
    rule_blocks=[
        fl.RuleBlock(
            name="mamdani",
            conjunction=None,
            disjunction=None,
            implication=fl.AlgebraicProduct(),
            activation=fl.General(),
            rules=[
                fl.Rule.create("if obstacle is left then mSteer is right"),
                fl.Rule.create("if obstacle is right then mSteer is left"),
            ],
        )
    ],
)

float and vectorization

# single `float` operation
engine.input_variable("obstacle").value = 0.5
engine.process()
print("y =", engine.output_variable("mSteer").value)
# > y = 0.5
print("ỹ =", engine.output_variable("mSteer").fuzzy_value())
# > ỹ = 0.500/left + 0.500/right

# vectorization
engine.input_variable("obstacle").value = fl.array([0, 0.25, 0.5, 0.75, 1.0])
engine.process()
print("y =", repr(engine.output_variable("mSteer").value))
# > y = array([0.6666665 , 0.62179477, 0.5       , 0.37820523, 0.3333335 ])
print("ỹ =", repr(engine.output_variable("mSteer").fuzzy_value()))
# > ỹ = array(['0.000/left + 1.000/right',
#              '0.250/left + 0.750/right',
#              '0.500/left + 0.500/right',
#              '0.750/left + 0.250/right',
#              '1.000/left + 0.000/right'], dtype='<U26')

Please refer to the documentation for more information: fuzzylite.github.io/pyfuzzylite/

Contributing

All contributions are welcome, provided they follow the following guidelines:

  • Source code is consistent with standards in the library
  • Contribution is properly documented and tested, raising issues where appropriate
  • Contribution is licensed under the FuzzyLite License

Reference

If you are using the FuzzyLite Libraries, please cite the following reference in your article:

Juan Rada-Vilela. The FuzzyLite Libraries for Fuzzy Logic Control, 2018. URL https://fuzzylite.com.

Or using bibtex:

@misc{fl::fuzzylite,
    author={Juan Rada-Vilela},
    title={The FuzzyLite Libraries for Fuzzy Logic Control},
    url={https://fuzzylite.com},
    year={2018}
}

fuzzylite® is a registered trademark of FuzzyLite
jfuzzylite™, pyfuzzylite™ and QtFuzzyLite™ are trademarks of FuzzyLite

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfuzzylite-8.0.3.tar.gz (700.5 kB view details)

Uploaded Source

Built Distribution

pyfuzzylite-8.0.3-py3-none-any.whl (737.8 kB view details)

Uploaded Python 3

File details

Details for the file pyfuzzylite-8.0.3.tar.gz.

File metadata

  • Download URL: pyfuzzylite-8.0.3.tar.gz
  • Upload date:
  • Size: 700.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for pyfuzzylite-8.0.3.tar.gz
Algorithm Hash digest
SHA256 8841b702612156868f9744769786f5acf6ff2c501359460cef5c45a99c608c2b
MD5 23d686dd1bf14f262a627b432d9831e2
BLAKE2b-256 c2734d813cd34bea84fa590918511b2eac68eea7b0654ff9227ed1fae9e54e9a

See more details on using hashes here.

File details

Details for the file pyfuzzylite-8.0.3-py3-none-any.whl.

File metadata

  • Download URL: pyfuzzylite-8.0.3-py3-none-any.whl
  • Upload date:
  • Size: 737.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for pyfuzzylite-8.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 896169c26276f0c2646983c0ca1eea1d203fc677a1031da42f2f33c59a4de341
MD5 56ca40305193f835d955766c87b3b876
BLAKE2b-256 ba2b00e3bb9880c9f4125488a30888b7cb2ab22fd95e187a8a6e8d7717f092c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page