Skip to main content

Finite volume discretizations for Python

Project description


gh-actions codecov Code style: black PyPI pyversions PyPi Version GitHub stars PyPi downloads

Creating finite volume equation systems with ease.

pyfvm provides everything that is needed for setting up finite volume equation systems. The user needs to specify the finite volume formulation in a configuration file, and pyfvm will create the matrix/right-hand side or the nonlinear system for it. This package is for everyone who wants to quickly construct FVM systems.


Linear equation systems

pyfvm works by specifying the residuals, so for solving Poisson's equation with Dirichlet boundary conditions, simply do

import pyfvm
from pyfvm.form_language import *
import meshzoo
from scipy.sparse import linalg
import meshplex

class Poisson:
    def apply(self, u):
        return integrate(lambda x: -n_dot_grad(u(x)), dS) \
             - integrate(lambda x: 1.0, dV)

    def dirichlet(self, u):
        return [(lambda x: u(x) - 0.0, Boundary())]

# Create mesh using meshzoo
vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 401, 201)
mesh = meshplex.MeshTri(vertices, cells)

matrix, rhs = pyfvm.discretize_linear(Poisson(), mesh)

u = linalg.spsolve(matrix, rhs)

mesh.write('out.vtk', point_data={'u': u})

This example uses meshzoo for creating a simple mesh, but anything else that provides vertices and cells works as well. For example, reading from a wide variety of mesh files is supported (via meshio):

mesh ="pacman.e")

Likewise, PyAMG is a much faster solver for this problem

import pyamg

ml = pyamg.smoothed_aggregation_solver(linear_system.matrix)
u = ml.solve(linear_system.rhs, tol=1e-10)

More examples are contained in the examples directory.

Nonlinear equation systems

Nonlinear systems are treated almost equally; only the discretization and obviously the solver call is different. For Bratu's problem:

import pyfvm
from pyfvm.form_language import *
import meshzoo
import numpy
from sympy import exp
import meshplex

class Bratu:
    def apply(self, u):
        return integrate(lambda x: -n_dot_grad(u(x)), dS) \
             - integrate(lambda x: 2.0 * exp(u(x)), dV)

    def dirichlet(self, u):
        return [(u, Boundary())]

vertices, cells = meshzoo.rectangle(0.0, 2.0, 0.0, 1.0, 101, 51)
mesh = meshplex.MeshTri(vertices, cells)

f, jacobian = pyfvm.discretize(Bratu(), mesh)

def jacobian_solver(u0, rhs):
    from scipy.sparse import linalg
    jac = jacobian.get_linear_operator(u0)
    return linalg.spsolve(jac, rhs)

u0 = numpy.zeros(len(vertices))
u = pyfvm.newton(f.eval, jacobian_solver, u0)

mesh.write('out.vtk', point_data={'u': u})

Note that the Jacobian is computed symbolically from the Bratu class.

Instead of pyfvm.newton, you can use any solver that accepts the residual computation f.eval, e.g.,

import scipy.optimize

u = scipy.optimize.newton_krylov(f.eval, u0)


pyfvm is available from the Python Package Index, so simply type

pip install pyfvm

to install.


To run the tests, check out this repository and type



This software is published under the GPLv3 license.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyfvm, version 0.3.3
Filename, size File type Python version Upload date Hashes
Filename, size pyfvm-0.3.3-py3-none-any.whl (26.8 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pyfvm-0.3.3.tar.gz (18.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page