Skip to main content

No project description provided

Project description

Build Status Documentation Status PyPI version codecov python27 python36 DOI

pyGAM

Generalized Additive Models in Python.

Documentation

Installation

pip install pygam

scikit-sparse

To speed up optimization on large models with constraints, it helps to have scikit-sparse installed because it contains a slightly faster, sparse version of Cholesky factorization. The import from scikit-sparse references nose, so you'll need that too.

The easiest way is to use Conda:
conda install -c conda-forge scikit-sparse nose

scikit-sparse docs

Contributing - HELP REQUESTED

Contributions are most welcome!

You can help pyGAM in many ways including:

  • Working on a known bug.
  • Trying it out and reporting bugs or what was difficult.
  • Helping improve the documentation.
  • Writing new distributions, and link functions.
  • If you need some ideas, please take a look at the issues.

To start:

  • fork the project and cut a new branch
  • Now install the testing dependencies
conda install pytest numpy pandas scipy pytest-cov cython
pip install --upgrade pip
pip install -r requirements.txt

It helps to add a sym-link of the forked project to your python path. To do this, you should install flit:

  • pip install flit
  • Then from main project folder (ie .../pyGAM) do: flit install -s

Make some changes and write a test...

  • Test your contribution (eg from the .../pyGAM): py.test -s
  • When you are happy with your changes, make a pull request into the master branch of the main project.

About

Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:

alt tag

where X.T = [X_1, X_2, ..., X_p] are independent variables, y is the dependent variable, and g() is the link function that relates our predictor variables to the expected value of the dependent variable.

The feature functions f_i() are built using penalized B splines, which allow us to automatically model non-linear relationships without having to manually try out many different transformations on each variable.

GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each X_i on Y individually while holding all other predictors constant.

The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.

Citing pyGAM

Please consider citing pyGAM if it has helped you in your research or work:

Daniel Servén, & Charlie Brummitt. (2018, March 27). pyGAM: Generalized Additive Models in Python. Zenodo. DOI: 10.5281/zenodo.1208723

BibTex:

@misc{daniel\_serven\_2018_1208723,
  author       = {Daniel Servén and
                  Charlie Brummitt},
  title        = {pyGAM: Generalized Additive Models in Python},
  month        = mar,
  year         = 2018,
  doi          = {10.5281/zenodo.1208723},
  url          = {https://doi.org/10.5281/zenodo.1208723}
}

References

  1. Simon N. Wood, 2006
    Generalized Additive Models: an introduction with R

  2. Hastie, Tibshirani, Friedman
    The Elements of Statistical Learning
    http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

  3. James, Witten, Hastie and Tibshirani
    An Introduction to Statistical Learning
    http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf

  4. Paul Eilers & Brian Marx, 1996 Flexible Smoothing with B-splines and Penalties http://www.stat.washington.edu/courses/stat527/s13/readings/EilersMarx_StatSci_1996.pdf

  5. Kim Larsen, 2015
    GAM: The Predictive Modeling Silver Bullet
    http://multithreaded.stitchfix.com/assets/files/gam.pdf

  6. Deva Ramanan, 2008
    UCI Machine Learning: Notes on IRLS
    http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/irls_notes.pdf

  7. Paul Eilers & Brian Marx, 2015
    International Biometric Society: A Crash Course on P-splines
    http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf

  8. Keiding, Niels, 1991
    Age-specific incidence and prevalence: a statistical perspective

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygam-0.8.1.tar.gz (513.9 kB view details)

Uploaded Source

Built Distribution

pygam-0.8.1-py3-none-any.whl (522.2 kB view details)

Uploaded Python 3

File details

Details for the file pygam-0.8.1.tar.gz.

File metadata

  • Download URL: pygam-0.8.1.tar.gz
  • Upload date:
  • Size: 513.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pygam-0.8.1.tar.gz
Algorithm Hash digest
SHA256 717fecc3cb7ea127db7ce3a457eef40512b318301f95e09810686b492c63360a
MD5 1b564be8dca4b1639300c41545fcf836
BLAKE2b-256 5856d8a35e2443eef99f0b765cea79aeca7cc40175ab42b939709802250a733d

See more details on using hashes here.

File details

Details for the file pygam-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: pygam-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 522.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pygam-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c9a362070c3ca3eff07a957ea6083862293a582032d43bd1d47cbbb1df852e30
MD5 9425bd6f1394abe28a533ad2911894a3
BLAKE2b-256 dbd6adf91b9f1b242576302153f77fd91548fdd41e64768ced68472982a9c4a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page