Skip to main content

A framework for processing adsorption data for porous materials.

Project description



https://raw.githubusercontent.com/pauliacomi/pyGAPS/develop/docs/logo.svg

Overview

pyGAPS (Python General Adsorption Processing Suite) is a framework for adsorption data analysis and fitting, written in Python 3.

Features

  • Advanced adsorption data import and manipulation.

  • Routine analysis such as BET/Langmuir surface area, t-plots, alpha-s plots, Dubinin plots etc.

  • Pore size distribution calculations for mesopores (BJH, Dollimore-Heal).

  • Pore size distribution calculations for micropores (Horvath-Kawazoe).

  • Pore size distribution calculations using kernels (DFT, QSDFT, …)

  • Isotherm fitting with various models (Henry, Langmuir, DS/TS Langmuir, etc..)

  • Isosteric enthalpy of adsorption calculations.

  • IAST predictions for binary and multicomponent adsorption.

  • Parsing to and from multiple formats such as AIF, Excel, CSV and JSON.

  • Simple methods for isotherm graphing and comparison.

  • An database backend for storing and retrieving data.

Documentation

pyGAPS is built with three key mantras in mind:

  • Opinionated: there are many places where the code will suggest or default to what the it considers a good practice. As examples: the standard units, pore size distribution methods and BET calculation limits.

  • Flexible: while the defaults are there for a reason, you can override pretty much any parameter. Want to pass a custom adsorbate thickness function or use volumetric bases? Can do!

  • Transparent: all code is well documented and open source. There are no black boxes.

In-depth explanations, examples and theory can be found in the online documentation. If you are familiar with Python and adsorption and want to jump right in, look at the quickstart section. Examples for each of the capabilities specified above can be found documented here. Most of the pages are actually Jupyter Notebooks, you can download them and run them yourself from the /docs/examples folder.

To become well familiarised with the concepts introduced by pyGAPS, such as what is an Isotherm, how units work, what data is required and can be stored etc., a deep dive is available in the manual.

Finally, having a strong grasp of the science of adsorption is recommended, to understand the strengths and shortcomings of various methods. We have done our best to explain the theory and application range of each capability and model. To learn more, look at the reference or simply call help() from a python interpreter (for example help(pygaps.PointIsotherm).

Citing

Please consider citing the related paper we published if you use the program in your research.

Paul Iacomi, Philip L. Llewellyn, Adsorption (2019). pyGAPS: A Python-Based Framework for Adsorption Isotherm Processing and Material Characterisation. DOI: https://doi.org/10.1007/s10450-019-00168-5

Installation

The easiest way to install pyGAPS is from the command line. Using pip for example:

pip install pygaps

or Anaconda/Conda:

conda install -c conda-forge pygaps

If you are just starting out, Anaconda/Conda is a good bet since it manages virtual environments for you. Check out Installation for more details.

Development

To install the development branch, clone the repository from GitHub. Then install the package with pip either in regular or developer mode.

git clone https://github.com/pauliacomi/pyGAPS

# then install
pip install ./pyGAPS

# or in editable/develop mode
pip install -e ./pyGAPS

If you want to contribute to pyGAPS or develop your own code from the package, check out the detailed information in CONTRIBUTING.rst.

Bugs or questions?

For any bugs found, please open an issue or, even better, submit a pull request. It’ll make my life easier. This also applies to any features which you think might benefit the project. I’m also more than happy to answer any questions. Shoot an email to mail( at )pauliacomi.com or find me at https://pauliacomi.com or on Twitter.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygaps-4.1.1.tar.gz (280.9 kB view details)

Uploaded Source

Built Distribution

pygaps-4.1.1-py3-none-any.whl (324.7 kB view details)

Uploaded Python 3

File details

Details for the file pygaps-4.1.1.tar.gz.

File metadata

  • Download URL: pygaps-4.1.1.tar.gz
  • Upload date:
  • Size: 280.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pygaps-4.1.1.tar.gz
Algorithm Hash digest
SHA256 f79ca1b21f244e3c3e8e708e2fdae3fbca0ed3570fa3aa67b7e5eef5f1fea03c
MD5 fc14c88eb2ac7d369206d2547cbf09a3
BLAKE2b-256 b3d281ac1fdc2f27bb0d7d48837a21c8fbb96dcf4da23440cc53cd711ee9c283

See more details on using hashes here.

Provenance

File details

Details for the file pygaps-4.1.1-py3-none-any.whl.

File metadata

  • Download URL: pygaps-4.1.1-py3-none-any.whl
  • Upload date:
  • Size: 324.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pygaps-4.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ad0a6999d7980ec501947f09588286fb68db156b1241049c5a9fd5d4da8b14af
MD5 4828a5cc0ec87f1542be28e219c838f2
BLAKE2b-256 6de01e143aacf8eab9966dff153a3e8eb02c66fa0108f65080d3165ebbdfa993

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page