PyGelbooru is an unofficial and lightweight asynchronous library for Gelbooru compatible API's.
Project description
PyGelbooru
PyGelbooru is an unofficial and lightweight asynchronous library for the Gelbooru API.
Installation
This library requires Python 3.6 or above.
You can install the library through pip as follows,
pip install pygelbooru
Usage
Searching
The primary use for this library is, naturally, to search for images with specific tags.
This can be done as so:
from pygelbooru import Gelbooru
# API key/user ID is optional, but access may be limited without them
gelbooru = Gelbooru('API_KEY', 'USER_ID')
results = await gelbooru.search_posts(tags=['dog ears', '1girl'], exclude_tags=['nude'])
[<GelbooruImage(id=5105386, filename='b77e69be0a4b...dde071dc.jpeg', owner='anon2003')>,
<GelbooruImage(id=5105161, filename='bf169f891ebe...02bceb5e.jpeg', owner='cpee')>,
<GelbooruImage(id=5104148, filename='46df3ebe2d41...4316d218e.jpg', owner='danbooru')>,
<GelbooruImage(id=5104080, filename='e8eec23d151e...419293401.png', owner='anon2003')>,
<GelbooruImage(id=5103937, filename='5bf279f3c546...be3fc53c8.jpg', owner='danbooru')>,
...
Tags can contain spaces when passed as arguments, they will simply be reformated with underscores before being queried, so you don't need to reformat them yourself.
Results are returned as a list of GelbooruImage containers. When cast to a string, this will return the image_url,
str(results[0])
'https://img2.gelbooru.com/images/b7/7e/b77e69be0a4b581eac597527dde071dc.jpeg'
You can also pull other information returned by the API, https://github.com/FujiMakoto/pygelbooru/blob/master/pygelbooru/gelbooru.py#L32-L47
Searching (Random)
In addition to searching for a large list of images, PyGelbooru also provides a helper method for when you're really just after a single, random image that matches the specified tags.
This method will automatically pull a random image from the last 20,000 Gelbooru image submissions.
result = await gelbooru.random_post(tags=['cat ears', '1girl', 'cat hood', 'bell'], exclude_tags=['nude'])
<GelbooruImage(id=5106718, filename='bbbdfbf9e883...161753514.png', owner='6498')>
Comments
You can fetch post comments directly from the GelbooruImage container,
post = await gelbooru.get_post(5099841)
await post.get_comments()
[<GelbooruComment(id=2486074, author='Anonymous', created_at='2020-01-28 08:47')>]
Tags
Besides searching for images, you can also pull information on tags as follows,
await gelbooru.tag_list(name='dog ears')
<GelbooruTag(id=773, name='dog_ears', count=22578)>
# Use "name_pattern" to search for partial matches to a specified tag
await gelbooru.tag_list(name_pattern='%splatoon%', limit=4)
[<GelbooruTag(id=892683, name='splatoon_(series)', count=11353)>,
<GelbooruTag(id=759189, name='splatoon_2', count=3488)>,
<GelbooruTag(id=612372, name='aori_(splatoon)', count=2266)>,
<GelbooruTag(id=612374, name='hotaru_(splatoon)', count=2248)>]
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pygelbooru-0.5.0.tar.gz
.
File metadata
- Download URL: pygelbooru-0.5.0.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3a7d702384744c0ea4bbcf8cd9c5d22060c21e2124bb0c43650a84a7715176e |
|
MD5 | a56cf93182a26927c60527ef8a221ffe |
|
BLAKE2b-256 | 3ec4e3291d3e7985d9269c02832fcc9863682ca4456c187d033a5597761fb8f2 |
File details
Details for the file pygelbooru-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: pygelbooru-0.5.0-py3-none-any.whl
- Upload date:
- Size: 19.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f709c0abd3f6a02af85a401b2d9b559ce6e0f490cf4faeed37f1227cad6bc6e |
|
MD5 | 72637ee150ed975ee9b1eb9b29eabb76 |
|
BLAKE2b-256 | 91fbb85a9410429f568a4c473c7590cc05c3fab037b25d9197d0f6c995042cfd |