Skip to main content

PyGelbooru is an unofficial and lightweight asynchronous library for the Gelbooru API.

Project description

PyGelbooru

GitHub

PyGelbooru is an unofficial and lightweight asynchronous library for the Gelbooru API.

Installation

This library requires Python 3.6 or above.

You can install the library through pip as follows,

pip install pygelbooru

Usage

Searching

The primary use for this library is, naturally, to search for images with specific tags.

This can be done as so:

from pygelbooru import Gelbooru

# API key/user ID is optional, but access may be limited without them
gelbooru = Gelbooru('API_KEY', 'USER_ID')

results = await gelbooru.search_posts(tags=['dog ears', '1girl'], exclude_tags=['nude'])
[<GelbooruImage(id=5105386, filename='b77e69be0a4b...dde071dc.jpeg', owner='anon2003')>,
 <GelbooruImage(id=5105161, filename='bf169f891ebe...02bceb5e.jpeg', owner='cpee')>,
 <GelbooruImage(id=5104148, filename='46df3ebe2d41...4316d218e.jpg', owner='danbooru')>,
 <GelbooruImage(id=5104080, filename='e8eec23d151e...419293401.png', owner='anon2003')>,
 <GelbooruImage(id=5103937, filename='5bf279f3c546...be3fc53c8.jpg', owner='danbooru')>,
 ...

Tags can contain spaces when passed as arguments, they will simply be reformated with underscores before being queried, so you don't need to reformat them yourself.

Results are returned as a list of GelbooruImage containers. When cast to a string, this will return the image_url,

str(results[0])
'https://img2.gelbooru.com/images/b7/7e/b77e69be0a4b581eac597527dde071dc.jpeg'

You can also pull other information returned by the API, https://github.com/FujiMakoto/pygelbooru/blob/master/pygelbooru/gelbooru.py#L32-L47

Searching (Random)

In addition to searching for a large list of images, PyGelbooru also provides a helper method for when you're really just after a single, random image that matches the specified tags.

This method will automatically pull a random image from the last 20,000 Gelbooru image submissions.

result = await gelbooru.search_post(tags=['cat ears', '1girl', 'cat hood', 'bell'], exclude_tags=['nude'])
<GelbooruImage(id=5106718, filename='bbbdfbf9e883...161753514.png', owner='6498')>

Comments

You can fetch post comments directly from the GelbooruImage container,

post = await gelbooru.get_post(5099841)
await post.get_comments()
[<GelbooruComment(id=2486074, author='Anonymous', created_at='2020-01-28 08:47')>]

Tags

Besides searching for images, you can also pull information on tags as follows,

await gelbooru.tag_list(name='dog ears')
<GelbooruTag(id=773, name='dog_ears', count=22578)>

# Use "name_pattern" to search for partial matches to a specified tag
await gelbooru.tag_list(name_pattern='splatoon', limit=4)
[<GelbooruTag(id=892683, name='splatoon_(series)', count=11353)>,
 <GelbooruTag(id=759189, name='splatoon_2', count=3488)>,
 <GelbooruTag(id=612372, name='aori_(splatoon)', count=2266)>,
 <GelbooruTag(id=612374, name='hotaru_(splatoon)', count=2248)>]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pygelbooru, version 0.3.0
Filename, size File type Python version Upload date Hashes
Filename, size pygelbooru-0.3.0.tar.gz (6.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page