Python implementation of Genetic Algorithm
Project description
pyga
Python implementation of Genetic Algorithm
Installation
pip3 install pygenal
Usage
this test is able to find global maximum of 6th order polynom with two variables in 500ms with precision approximately 10-4 to 10-5 % (depending on hardware)
#!/usr/bin/env python3
# import required classes
from pygenal.ga import Population, Individual, Gene, geneTypes, Duration
import numpy as np
import time
# create population of your own, override fitness method to suit your needs.
# your system evaluation goes here, for sake of demonstration, use polynom
class Polynom(Population):
def fitness(self, individual):
x = individual.get("x").value
y = individual.get("y").value
color = individual.get("color").value
# test against function with global maximum:
# max{x + 3 x^2 - x^4 - y^6 + y/3 - y^3 4 - y - 5} ≈ 3.35864
# at (x, y) ≈ (1.30084, -1.27413)
# + favorize chocolate over shorter colors, just for demonstration
return (x + 3*(x**2) - x**4 - y**6 + y/3.0 - (y**3)*4 - y - 5) + len(color)/10
# introduce non-number options such as color, good for selections
colors = ["brown", "green", "grey", "blue", "chocolate"]
if __name__ == '__main__':
# spawn individual
i1 = Individual()
# construct "DNA"
i1 += Gene("x", geneTypes.REAL, np.random.randint(-10, 10), min=-10, max=10)
i1 += Gene("y", geneTypes.REAL, np.random.randint(-10, 10), min=-10, max=10)
i1 += Gene("color", geneTypes.VALUE, np.random.choice(colors), availableOptions=colors, dominant=True)
# create tribe with size of 100 individuals based on your first Individual
population = Polynom(
species=i1,
size=100,
chanceOfMutationStart=.5,
chanceOfMutationStop=0.0001
)
tStart = time.time()
# start evolution until:
# you didn't pass 1000 generations OR
# fittest didn't change for 200 generations OR
# 2.5s didn't passes yet
population.evolve(
allowCrossover=True,
generations=100,
verbose=True,
timeout=Duration(seconds=0, miliseconds=500),
)
print(f"Evolved in {time.time()-tStart}s, precision: {(4.258642115713602 - population.fittest.score)*100}%")
print(f"Fittest: {population.fittest}, genes: {repr(population.fittest)}")
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pygenal-1.0.7.tar.gz
(4.6 kB
view details)
Built Distribution
File details
Details for the file pygenal-1.0.7.tar.gz
.
File metadata
- Download URL: pygenal-1.0.7.tar.gz
- Upload date:
- Size: 4.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 114b3c28acff00b44d0923d5037c0bcff0213e59892173af119a4df55675adbc |
|
MD5 | aeccb6b6ea09fce6621d61981e867c4d |
|
BLAKE2b-256 | d629ffa70b55d65c9593a3f2fb03c634d1b41c4388dcaf29985a6af21d4680b6 |
File details
Details for the file pygenal-1.0.7-py3-none-any.whl
.
File metadata
- Download URL: pygenal-1.0.7-py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3365a068dc512cd3fe43404ab4dbfb20d52f723e400225ebc8759709e11a1a17 |
|
MD5 | cc4f7c711b81e8460e92e2f8921afd30 |
|
BLAKE2b-256 | e82b7aa1a5ee6e013beec6219cd655a65d84cc5bfffa39ada8f6080186176d58 |