Skip to main content

Python implementation of Genetic Algorithm

Project description

pyga

Python implementation of Genetic Algorithm

Installation

pip3 install pygenal

Usage

#!/usr/bin/env python3

# import required classes
from pygenal.ga import Population, Individual, Gene, geneTypes, Duration
import numpy as np
import time


# create population of your own, override fitness method to suit your needs.
# your system evaluation goes here, for sake of demonstration, use polynom
class Polynom(Population):
    def fitness(self, individual):
        x = individual.get("x").value
        y = individual.get("y").value
        color = individual.get("color").value

        # test against function with global maximum:
        # max{x + 3 x^2 - x^4 - y^6 + y/3 - y^3 4 - y - 5} ≈ 3.35864
        # at (x, y) ≈ (1.30084, -1.27413)
        # + favorize chocolate over shorter colors, just for demonstration
        return (x + 3*(x**2) - x**4 - y**6 + y/3.0 - (y**3)*4 - y - 5) + len(color)/10

# introduce non-number options such as color, good for selections
colors = ["brown", "green", "grey", "blue", "chocolate"]


if __name__ == '__main__':

    # spawn individual
    i1 = Individual()

    # construct "DNA"
    i1 += Gene("x", geneTypes.REAL, np.random.randint(-3, 3), min=-10, max=10)
    i1 += Gene("y", geneTypes.REAL, np.random.randint(-3, 3), min=-10, max=10)
    i1 += Gene("color", geneTypes.VALUE, np.random.choice(colors), availableOptions=colors, dominant=True)

    # create tribe with size of 100 individuals based on your first Individual
    population = Polynom(
            species=i1,
            size=100,
            chanceOfMutationStart=0.5,
            chanceOfMutationStop=0.01
        )

    tStart = time.time()

    # start evolution until:
    #   you didn't pass 1000 generations OR
    #   fittest didn't change for 200 generations OR
    #   2.5s didn't passes yet
    population.evolve(
            generations=1000,
            verbose=True,
            timeout=Duration(seconds=2, miliseconds=500),
            terminateAfter=200,
        )
    print(f"Evolved in {time.time()-tStart}s, precision: {(3.35864+len('chocolate')/10 - population.fittest.score)*100}%")
    print(f"Fittest: {population.fittest}, genes: {repr(population.fittest)}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygenal-1.0.3.tar.gz (4.6 kB view hashes)

Uploaded Source

Built Distribution

pygenal-1.0.3-py3-none-any.whl (6.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page