Skip to main content

A genome visualization python package for comparative genomics

Project description

pyGenomeViz

Python3 OS License Latest PyPI version conda-forge CI

[!NOTE] A major version upgrade, pyGenomeViz v1.0.0, was released on 2024/05. Backward incompatible changes have been made between v1.0.0 and v0.X.X to make for a more sophisticated API/CLI design. Therefore, v0.X.X users should pin the version to v0.4.4 or update existing code for v1.0.0. Previous v0.4.4 documentation is available here.

Table of contents

Overview

pyGenomeViz is a genome visualization python package for comparative genomics implemented based on matplotlib. This package is developed for the purpose of easily and beautifully plotting genomic features and sequence similarity comparison links between multiple genomes. It supports genome visualization of Genbank/GFF format file and can be saved figure in various formats (JPG/PNG/SVG/PDF/HTML). User can use pyGenomeViz for interactive genome visualization figure plotting on jupyter notebook, or automatic genome visualization figure plotting in genome analysis scripts/workflow.

For more information, please see full documentation here.

pygenomeviz_gallery.png
Fig.1 pyGenomeViz example plot gallery

pygenomeviz_gui.gif Fig.2 pyGenomeViz web application example (Demo Page)

Installation

Python 3.9 or later is required for installation.

Install PyPI package:

pip install pygenomeviz

Install conda-forge package:

conda install -c conda-forge pygenomeviz

Use Docker (Image Registry):

docker run -it --rm -p 8501:8501 ghcr.io/moshi4/pygenomeviz:latest pgv-gui -h

API Examples

Jupyter notebooks containing code examples below is available here.

Features

from pygenomeviz import GenomeViz

gv = GenomeViz()
gv.set_scale_xticks(ymargin=0.5)

track = gv.add_feature_track("tutorial", 1000)
track.add_sublabel()

track.add_feature(50, 200, 1)
track.add_feature(250, 460, -1, fc="blue")
track.add_feature(500, 710, 1, fc="lime")
track.add_feature(750, 960, 1, fc="magenta", lw=1.0)

gv.savefig("features.png")

features.png

Styled Features

from pygenomeviz import GenomeViz

gv = GenomeViz()
gv.set_scale_bar(ymargin=0.5)

track = gv.add_feature_track("tutorial", (1000, 2000))
track.add_sublabel()

track.add_feature(1050, 1150, 1, label="arrow")
track.add_feature(1200, 1300, -1, plotstyle="bigarrow", label="bigarrow", fc="red", lw=1)
track.add_feature(1330, 1400, 1, plotstyle="bigbox", label="bigbox", fc="blue", text_kws=dict(rotation=0, hpos="center"))
track.add_feature(1420, 1500, 1, plotstyle="box", label="box", fc="limegreen", text_kws=dict(size=10, color="blue"))
track.add_feature(1550, 1600, 1, plotstyle="bigrbox", label="bigrbox", fc="magenta", ec="blue", lw=1, text_kws=dict(rotation=0, vpos="bottom", hpos="center"))
track.add_feature(1650, 1750, -1, plotstyle="rbox", label="rbox", fc="grey", text_kws=dict(rotation=-45, vpos="bottom"))
track.add_feature(1780, 1880, 1, fc="lime", hatch="o", arrow_shaft_ratio=0.2, label="arrow shaft\n0.2", text_kws=dict(rotation=0, hpos="center"))
track.add_feature(1890, 1990, 1, fc="lime", hatch="/", arrow_shaft_ratio=1.0, label="arrow shaft\n1.0", text_kws=dict(rotation=0, hpos="center"))

gv.savefig("styled_features.png")

styled_features.png

Tracks & Links

from pygenomeviz import GenomeViz

genome_list = [
    dict(name="genome 01", size=1000, features=((150, 300, 1), (500, 700, -1), (750, 950, 1))),
    dict(name="genome 02", size=1300, features=((50, 200, 1), (350, 450, 1), (700, 900, -1), (950, 1150, -1))),
    dict(name="genome 03", size=1200, features=((150, 300, 1), (350, 450, -1), (500, 700, -1), (700, 900, -1))),
]

gv = GenomeViz(track_align_type="center")
gv.set_scale_bar()

for genome in genome_list:
    name, size, features = genome["name"], genome["size"], genome["features"]
    track = gv.add_feature_track(name, size)
    track.add_sublabel()
    for idx, feature in enumerate(features, 1):
        start, end, strand = feature
        track.add_feature(start, end, strand, plotstyle="bigarrow", lw=1, label=f"gene{idx:02d}", text_kws=dict(rotation=0, vpos="top", hpos="center"))

# Add links between "genome 01" and "genome 02"
gv.add_link(("genome 01", 150, 300), ("genome 02", 50, 200))
gv.add_link(("genome 01", 700, 500), ("genome 02", 900, 700))
gv.add_link(("genome 01", 750, 950), ("genome 02", 1150, 950))
# Add links between "genome 02" and "genome 03"
gv.add_link(("genome 02", 50, 200), ("genome 03", 150, 300), color="skyblue", inverted_color="lime", curve=True)
gv.add_link(("genome 02", 350, 450), ("genome 03", 450, 350), color="skyblue", inverted_color="lime", curve=True)
gv.add_link(("genome 02", 900, 700), ("genome 03", 700, 500), color="skyblue", inverted_color="lime", curve=True)
gv.add_link(("genome 03", 900, 700), ("genome 02", 1150, 950), color="skyblue", inverted_color="lime", curve=True)

gv.savefig("tracks_and_links.png")

tracks_and_links.png

Exon Features

from pygenomeviz import GenomeViz

exon_regions1 = [(0, 210), (300, 480), (590, 800), (850, 1000), (1030, 1300)]
exon_regions2 = [(1500, 1710), (2000, 2480), (2590, 2800)]
exon_regions3 = [(3000, 3300), (3400, 3690), (3800, 4100), (4200, 4620)]

gv = GenomeViz()
track = gv.add_feature_track("Exon Features", 5000)
track.add_exon_feature(exon_regions1, strand=1, plotstyle="box", label="box", text_kws=dict(rotation=0, hpos="center"))
track.add_exon_feature(exon_regions2, strand=-1, plotstyle="arrow", label="arrow", text_kws=dict(rotation=0, vpos="bottom", hpos="center"), patch_kws=dict(fc="darkgrey"), intron_patch_kws=dict(ec="red"))
track.add_exon_feature(exon_regions3, strand=1, plotstyle="bigarrow", label="bigarrow", text_kws=dict(rotation=0, hpos="center"), patch_kws=dict(fc="lime", lw=1))

gv.savefig("exon_features.png")

exon_features.png

Genbank Features

from pygenomeviz import GenomeViz
from pygenomeviz.parser import Genbank
from pygenomeviz.utils import load_example_genbank_dataset

gbk_files = load_example_genbank_dataset("yersinia_phage")
gbk = Genbank(gbk_files[0])

gv = GenomeViz()
gv.set_scale_bar(ymargin=0.5)

track = gv.add_feature_track(gbk.name, gbk.genome_length)
track.add_sublabel()

features = gbk.extract_features()
track.add_features(features)

gv.savefig("genbank_features.png")

genbank_features.png

GFF Features

from pygenomeviz import GenomeViz
from pygenomeviz.parser import Gff
from pygenomeviz.utils import load_example_gff_file

gff_file = load_example_gff_file("escherichia_coli.gff.gz")
gff = Gff(gff_file)

gv = GenomeViz()
gv.set_scale_bar(ymargin=0.5)

target_ranges = ((220000, 230000), (300000, 310000))
track = gv.add_feature_track(name=gff.name, segments=target_ranges)
track.set_segment_sep(symbol="//")

for segment in track.segments:
    segment.add_sublabel()
    # Plot CDS features
    cds_features = gff.extract_features(feature_type="CDS", target_range=segment.range)
    segment.add_features(cds_features, label_type="gene", fc="skyblue", lw=1.0)
    # Plot rRNA features
    rrna_features = gff.extract_features(feature_type="rRNA", target_range=segment.range)
    segment.add_features(rrna_features, label_type="product", hatch="//", fc="lime", lw=1.0)

gv.savefig("gff_features.png")

gff_features.png

GFF Contigs

from pygenomeviz import GenomeViz
from pygenomeviz.parser import Gff
from pygenomeviz.utils import load_example_gff_file, is_pseudo_feature

gff_file = load_example_gff_file("mycoplasma_mycoides.gff")
gff = Gff(gff_file)

gv = GenomeViz(fig_track_height=0.5, feature_track_ratio=0.5)
gv.set_scale_xticks(labelsize=10)

# Plot CDS, rRNA features for each contig to tracks
for seqid, size in gff.get_seqid2size().items():
    track = gv.add_feature_track(seqid, size, labelsize=15)
    track.add_sublabel(size=10, color="grey")
    cds_features = gff.get_seqid2features(feature_type="CDS")[seqid]
    # CDS: blue, CDS(pseudo): grey
    for cds_feature in cds_features:
        color = "grey" if is_pseudo_feature(cds_feature) else "blue"
        track.add_features(cds_feature, color=color)
    # rRNA: lime
    rrna_features = gff.get_seqid2features(feature_type="rRNA")[seqid]
    track.add_features(rrna_features, color="lime")

gv.savefig("gff_contigs.png")

gff_contigs.png

Genbank Comparison by BLAST

from pygenomeviz import GenomeViz
from pygenomeviz.parser import Genbank
from pygenomeviz.utils import load_example_genbank_dataset
from pygenomeviz.align import Blast, AlignCoord

gbk_files = load_example_genbank_dataset("yersinia_phage")
gbk_list = list(map(Genbank, gbk_files))

gv = GenomeViz(track_align_type="center")
gv.set_scale_bar()

# Plot CDS features
for gbk in gbk_list:
    track = gv.add_feature_track(gbk.name, gbk.get_seqid2size(), align_label=False)
    for seqid, features in gbk.get_seqid2features("CDS").items():
        segment = track.get_segment(seqid)
        segment.add_features(features, plotstyle="bigarrow", fc="limegreen", lw=0.5)

# Run BLAST alignment & filter by user-defined threshold
align_coords = Blast(gbk_list, seqtype="protein").run()
align_coords = AlignCoord.filter(align_coords, length_thr=100, identity_thr=30)

# Plot BLAST alignment links
if len(align_coords) > 0:
    min_ident = int(min([ac.identity for ac in align_coords if ac.identity]))
    color, inverted_color = "grey", "red"
    for ac in align_coords:
        gv.add_link(ac.query_link, ac.ref_link, color=color, inverted_color=inverted_color, v=ac.identity, vmin=min_ident)
    gv.set_colorbar([color, inverted_color], vmin=min_ident)

gv.savefig("genbank_comparison_by_blast.png")

genbank_comparison_by_blast.png

CLI Examples

pyGenomeViz provides CLI workflows for genome alignment result visualization of Genbank genomes using BLAST / MUMmer / MMseqs / progressiveMauve, respectively.

BLAST CLI Workflow

See pgv-blast document for details.

# Download example dataset
pgv-download yersinia_phage
# Run BLAST CLI workflow
pgv-blast NC_070914.gbk NC_070915.gbk NC_070916.gbk NC_070918.gbk \
          -o pgv-blast_example --seqtype protein --show_scale_bar --curve \
          --feature_linewidth 0.3 --length_thr 100 --identity_thr 30

pgv-blast_example2.png

MUMmer CLI Workflow

See pgv-mummer document for details.

# Download example dataset
pgv-download mycoplasma_mycoides
# Run MUMmer CLI workflow
pgv-mummer GCF_000023685.1.gbff GCF_000800785.1.gbff GCF_000959055.1.gbff GCF_000959065.1.gbff \
           -o pgv-mummer_example --show_scale_bar --curve \
           --feature_type2color CDS:blue rRNA:lime tRNA:magenta

pgv-mummer_example3.png

MMseqs CLI Workflow

See pgv-mmseqs document for details.

# Download example dataset
pgv-download enterobacteria_phage
# Run MMseqs CLI workflow
pgv-mmseqs NC_013600.gbk NC_016566.gbk NC_019724.gbk NC_024783.gbk NC_028901.gbk NC_031081.gbk \
           -o pgv-mmseqs_example --show_scale_bar --curve --feature_linewidth 0.3 \
           --feature_type2color CDS:skyblue --normal_link_color chocolate --inverted_link_color limegreen

pgv-mmseqs_example2.png

progressiveMauve CLI Workflow

See pgv-pmauve document for details.

# Download example dataset
pgv-download escherichia_coli
# Run progressiveMauve CLI workflow
pgv-pmauve NC_000913.gbk.gz NC_002695.gbk.gz NC_011751.gbk.gz NC_011750.gbk.gz \
           -o pgv-pmauve_example --show_scale_bar

pgv-pmauve_example1.png

GUI (Web Application)

pyGenomeViz implements GUI (Web Application) functionality using streamlit as an option. Users can easily visualize the genomic features in Genbank files and their comparison results with GUI (Demo Page). See pgv-gui document for details.

pygenomeviz_gui.gif

HTML Viewer

pyGenomeViz implements HTML viewer output functionality for interactive data visualization. In API, HTML file can be output using savefig_html method. In CLI, user can select HTML file output option. As shown below, pan/zoom, tooltip display, object color change, text change, etc are available in HTML viewer (Demo Page1, Demo Page2).

pgv-viewer-demo.gif

Following libraries were used to implement HTML viewer.

Inspiration

pyGenomeViz was inspired by

Circular Genome Visualization

pyGenomeViz is a python package designed for linear genome visualization. If you are interested in circular genome visualization, check out my other python package pyCirclize.

pycirclize_example.png
Fig. pyCirclize example plot gallery

Star History

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygenomeviz-1.4.1.tar.gz (19.7 MB view details)

Uploaded Source

Built Distribution

pygenomeviz-1.4.1-py3-none-any.whl (1.7 MB view details)

Uploaded Python 3

File details

Details for the file pygenomeviz-1.4.1.tar.gz.

File metadata

  • Download URL: pygenomeviz-1.4.1.tar.gz
  • Upload date:
  • Size: 19.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pygenomeviz-1.4.1.tar.gz
Algorithm Hash digest
SHA256 b233e5714bbd7632017397180bc42658f426040881690fea435cccb9446d5302
MD5 3b866bff279f50015e553557d94ca14c
BLAKE2b-256 4389da67de58f92068445a8e8ae614e1c5dac63bbdce0d444227fd7c2a4c64f5

See more details on using hashes here.

File details

Details for the file pygenomeviz-1.4.1-py3-none-any.whl.

File metadata

  • Download URL: pygenomeviz-1.4.1-py3-none-any.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pygenomeviz-1.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1be4bbcb2748a45ab00296aff394fba6b486dfb45640e3436db1e4c890dd23fe
MD5 46193f585e024cc6ccd5fde2a159f3fe
BLAKE2b-256 b9cf65ae0ba1aa9880417a34a55954d02fb95c761d5609a633bc4da9439aa44c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page