PyGibbs is a numerical library for simulations of field theories in Python.
Project description
![Imagel](https://raw.githubusercontent.com/rajeshrinet/pygibbs/master/examples/banner.jpg)
## PyGibbs: Field theoretic simulations in Python [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/rajeshrinet/pygibbs/master?filepath=examples) ![Installation](https://github.com/rajeshrinet/pygibbs/workflows/Installation/badge.svg) ![Notebooks](https://github.com/rajeshrinet/pygibbs/workflows/Notebooks/badge.svg) [![Documentation Status](https://readthedocs.org/projects/pygibbs/badge/?version=latest)](https://pygibbs.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/pygibbs.svg)](https://badge.fury.io/py/pygibbs) [![Downloads](https://pepy.tech/badge/pygibbs)](https://pepy.tech/project/pygibbs) ![License](https://img.shields.io/github/license/rajeshrinet/pygibbs)
[About](#about) | [Documentation](https://pygibbs.readthedocs.io/en/latest/) | [News](#news) | [Installation](#installation) | [Examples](#examples) | [Publications ](#publications)| [Support](#support) | [License](#license)
## About [PyGibbs](https://github.com/rajeshrinet/pygibbs) is a numerical library for simulations of field theories in Python. The library constructs differentiation matrices using finite-difference and spectral methods. It also allows to solve Stokes equation using a spectral method, which satisfies compressibility exactly. The library currently offers support for doing field theoretical simulation and a direct numerical simulation of the Stokes equation (implementation for non-zero Reynolds number is planned) in both two and three space dimensions.
## News * Our paper has been highlighted in the Journal Club for Condensed Matter Physics with a [commentary](https://doi.org/10.36471/JCCM_March_2020_01).
## Installation Clone (or download) the repository and use a terminal to install using
` >> git clone https://github.com/rajeshrinet/pygibbs.git >> cd pygibbs >> pip install -r requirements.txt >> python setup.py install `
PyGibbs requires the following software
Python 2.6+ or Python 3.4+
[Cython 0.25.x+](http://docs.cython.org/en/latest/index.html) | [Matplotlib 2.0.x+](https://matplotlib.org) | [NumPy 1.x+](http://www.numpy.org) | [SciPy 1.1.x+](https://www.scipy.org/)
## Pip Alternatively install latest PyPI version
` >> pip install pygibbs `
## Examples
See the [examples folder](https://github.com/rajeshrinet/pygibbs/tree/master/examples) for a list of examples.
## Publications * [Hydrodynamically interrupted droplet growth in scalar active matter](https://doi.org/10.1103/PhysRevLett.123.148005). Rajesh Singh and Michael E. Cates. Phys. Rev. Lett. 123, 148005 (2019).
[Self-propulsion of active droplets without liquid-crystalline order](https://arxiv.org/abs/2004.06064). Rajesh Singh, Elsen Tjhung, and Michael E. Cates. arXiv:2004.06064.
## Support Please use the [issue tracker](https://github.com/rajeshrinet/pygibbs/issues) on GitHub.
## License We believe that openness and sharing improves the practice of science and increases the reach of its benefits. This code is released under the [MIT license](http://opensource.org/licenses/MIT). Our choice is guided by the excellent article on [Licensing for the scientist-programmer](http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002598).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file pygibbs-0.0.2.tar.gz
.
File metadata
- Download URL: pygibbs-0.0.2.tar.gz
- Upload date:
- Size: 431.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1c5362b9f63384b5f2ded17c2e98e1ed9d2f4f695318a63a3ee4c71e3f5f7c1 |
|
MD5 | 62d4aa8ef176717a5de594c99cd7c9ca |
|
BLAKE2b-256 | 3be86f2a803a258c29e74c3532c1d80f2fe7b312da74500388871078bfc55e62 |
File details
Details for the file pygibbs-0.0.2-py3.7-macosx-10.7-x86_64.egg
.
File metadata
- Download URL: pygibbs-0.0.2-py3.7-macosx-10.7-x86_64.egg
- Upload date:
- Size: 356.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e3d4cfa0d907875610d22a7982d6ee171b00c05618559bb849142c09a411906 |
|
MD5 | 4f3d06c5c9fb541b294510a7c2331594 |
|
BLAKE2b-256 | 2e79524462e11e895582a0a9a3cc6de41ed0dc71d137ae00e143b7f6a20dfcbe |
File details
Details for the file pygibbs-0.0.2-cp37-cp37m-macosx_10_7_x86_64.whl
.
File metadata
- Download URL: pygibbs-0.0.2-cp37-cp37m-macosx_10_7_x86_64.whl
- Upload date:
- Size: 354.6 kB
- Tags: CPython 3.7m, macOS 10.7+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e94aa650fd78d1c7840a39645efe9eabb2b095fd5026c65ea959926586d50951 |
|
MD5 | 86456c046d8c4743cf92066203735f5e |
|
BLAKE2b-256 | fee79c034f7d66b3ed0298bec86642c7563e20a1c01c527ba65e1b9d3320c1ee |