A Python framework to conduct GLUE analyses
Project description
Generalised Likelihood Uncertainty Estimation (GLUE) Framework
Joost Delsman, Deltares, 2011
Generic Python framework to conduct GLUE analyses
NOTE: Package is still under construction and undocumented
Necessary:
1) model parameters, that:
- hold the statistical properties of the a priori parameter space
- hold the statistical properties of the a posteriori parameter space
- can return a random value based on the a priori parameter space
- can accept an evaluated parameter + behavioural / non-behavioural
statement from the evaluator
2) a model, that:
- returns a result set based on a parameter set
- can be called successively to explore the parameter space
- resides outside GLUE
- (can even be outside python)
- function or wrapper must return a dict with parameters and
their values, recognised by the evaluator
3) a model evaluator, that:
- evaluates the model result by a prescribed set of rules
- assigns behavioural / non-behavioural
4) a framework that:
- initializes a monte-carlo sequence
- for each run:
- get parameter values
- run the model
- evaluate the model
- store behavioural runs
Joost Delsman, Deltares, 2011
Generic Python framework to conduct GLUE analyses
NOTE: Package is still under construction and undocumented
Necessary:
1) model parameters, that:
- hold the statistical properties of the a priori parameter space
- hold the statistical properties of the a posteriori parameter space
- can return a random value based on the a priori parameter space
- can accept an evaluated parameter + behavioural / non-behavioural
statement from the evaluator
2) a model, that:
- returns a result set based on a parameter set
- can be called successively to explore the parameter space
- resides outside GLUE
- (can even be outside python)
- function or wrapper must return a dict with parameters and
their values, recognised by the evaluator
3) a model evaluator, that:
- evaluates the model result by a prescribed set of rules
- assigns behavioural / non-behavioural
4) a framework that:
- initializes a monte-carlo sequence
- for each run:
- get parameter values
- run the model
- evaluate the model
- store behavioural runs
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyGLUE-0.0.4.zip
(9.2 kB
view hashes)