Skip to main content

Geneset Network Analysis

Project description

# PyGNA: a Python framework for geneset network analysis ![GitHub tag (latest by date)](https://img.shields.io/github/v/tag/stracquadaniolab/pygna?style=flat-square) [![Anaconda-Server Badge](https://anaconda.org/stracquadaniolab/pygna/badges/version.svg)](https://anaconda.org/stracquadaniolab/pygna) ![Build](https://github.com/stracquadaniolab/pygna/workflows/Build/badge.svg) ![Release](https://github.com/stracquadaniolab/pygna/workflows/Release/badge.svg)

PyGNA is a framework for statistical network analysis of high-throughput experiments. It can be used both as a standalone command line application or it can be used as API to develop custom analyses.

For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour.

![Infographic](docs/pygna_infographic-01.png)

## Installation

The easiest and fastest way to install pygna using conda:

$ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna

Alternatively you can install it through pip:

$ pip install pygna

Please note, that pip will not install non Python requirements.

You can also run pygna using Docker as follows:

$ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest

## Getting started

A typical pygna analysis consists of 3 steps:

  1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won’t need to repeat the same step again)

  2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion.

  3. Run the analysis you are interested into.

  4. Once you have the output tables, you can choose to visualize one or more plots.

Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis; our workflow contains sample data that you can use to familiarize with our software.

The examples below show some basic analysis that can be carried out with pygna.

### Example 1: Running pygna GNT analysis

Running pygna on this input as follows:

$ cd ./your-path/min-working-example/

$ pygna build-rwr-diffusion barabasi.interactome.tsv –output-file interactome_RWR.hdf5

$ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv –number-of-permutations 1000 –cores 4

$ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf

You can look at the plot of the results in the barplot_rwr.pdf file, and the corresponding table in table_topology_rwr.csv.

### Example 2: Running pygna GNA analysis

$ cd ./your-path/min-working-example/

skip this step if the matrix is already computed

$ pygna build-RWR-diffusion barabasi.interactome.tsv –output-file interactome_RWR.hdf5

The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000.

$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt –keep –number-of-permutations 100 –cores 4

If you don’t include the –results-figure flag at the comparison step, plot the matrix as follows

$ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png –rwr –annotate

The -k flag, keeps the -B geneset and permutes only on the set A.

If setname B is not passed, the analysis is run between each couple of setnames in the geneset.

$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv –number-of-permutations 100 –cores 4

$ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png –rwr –single-geneset

You can look at the plot of the results in the heatmap_within_comparison_rwr.png file, and the corresponding table in table_within_comparison_rwr.csv.

## Documentation

The official documentation for pygna can be found on [readthedocs](https://pygna.readthedocs.io/).

## Authors

## Citation

A unified framework for geneset network analysis. Viola Fanfani, Giovanni Stracquadanio. bioRxiv 699926; doi: https://doi.org/10.1101/699926

## Issues

Please post an issue to report a bug or request new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygna-3.2.0.tar.gz (42.6 kB view details)

Uploaded Source

Built Distribution

pygna-3.2.0-py3-none-any.whl (49.4 kB view details)

Uploaded Python 3

File details

Details for the file pygna-3.2.0.tar.gz.

File metadata

  • Download URL: pygna-3.2.0.tar.gz
  • Upload date:
  • Size: 42.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pygna-3.2.0.tar.gz
Algorithm Hash digest
SHA256 55e29bc1ba3472206e91430ddcce25d50ae352a3bcfaa301ae37ca9f237038ff
MD5 3c4df1666a7d79366e34b893f9ceba34
BLAKE2b-256 9d3badf946948fb56f999efb743095b78fe19b23cdf4d6b3df843cc1ac366914

See more details on using hashes here.

File details

Details for the file pygna-3.2.0-py3-none-any.whl.

File metadata

  • Download URL: pygna-3.2.0-py3-none-any.whl
  • Upload date:
  • Size: 49.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for pygna-3.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 21d188b587a3107b6fbe3535596bcadb3395622c8f3e51fc9d49364789635471
MD5 82b35ccf3d22fa4250f890b8bd39ff32
BLAKE2b-256 5dc81507721637c3ef6663cb4fafb943d0498f3235083cf6ab9bea442305cc94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page