A high-performance functional programming library for Python
Project description
PyGraham 🚀
A high-performance functional programming library for Python that brings truly functional programming capabilities with significant performance improvements over vanilla Python and other functional libraries.
Why PyGraham?
Python is wonderful, but it lacks true functional programming features. PyGraham fills this gap by providing:
- 🎯 Type-safe monads (Maybe, Either) for elegant error handling
- 📦 Immutable data structures with structural sharing
- 🔗 Function composition (compose, pipe, curry)
- 💤 Lazy evaluation for efficient data processing
- 🎨 Pattern matching for expressive code
- ⚡ C++ extensions for performance-critical operations
Installation
pip install pygraham
Quick Start
Elegant Error Handling with Monads
Before (Vanilla Python):
def process_data(data):
if data is None:
return None
result = transform(data)
if result is None:
return None
validated = validate(result)
if validated is None:
return None
return save(validated)
After (PyGraham):
from pygraham import Maybe, pipe
process_data = pipe(
Maybe.of,
lambda m: m.flat_map(transform),
lambda m: m.flat_map(validate),
lambda m: m.flat_map(save)
)
# Or even cleaner:
result = (Maybe.of(data)
.flat_map(transform)
.flat_map(validate)
.flat_map(save)
.get_or_else(default_value))
Immutable Data Structures
from pygraham import ImmutableList, ImmutableDict
# Lists
numbers = ImmutableList.of(1, 2, 3, 4, 5)
doubled = numbers.map(lambda x: x * 2)
evens = numbers.filter(lambda x: x % 2 == 0)
total = numbers.reduce(lambda acc, x: acc + x, 0)
# Original unchanged!
assert list(numbers) == [1, 2, 3, 4, 5]
# Chaining operations
result = (ImmutableList.of(1, 2, 3, 4, 5)
.filter(lambda x: x % 2 == 0)
.map(lambda x: x * 2)
.reverse())
# [8, 4]
# Dictionaries
config = ImmutableDict.of(debug=True, port=8080)
new_config = config.set("host", "localhost").set("debug", False)
# Original unchanged!
Function Composition
from pygraham import compose, pipe, curry
# Compose (right to left)
add_one = lambda x: x + 1
double = lambda x: x * 2
f = compose(double, add_one)
f(3) # (3 + 1) * 2 = 8
# Pipe (left to right)
g = pipe(add_one, double)
g(3) # (3 + 1) * 2 = 8
# Curry
@curry
def add_three(a, b, c):
return a + b + c
add_three(1)(2)(3) # 6
add_three(1, 2)(3) # 6
add_three(1)(2, 3) # 6
Lazy Evaluation
from pygraham import LazySequence
# Process infinite sequences efficiently
result = (LazySequence.infinite(1)
.filter(lambda x: x % 2 == 0)
.map(lambda x: x * 2)
.take(5)
.to_list())
# [4, 8, 12, 16, 20]
# Only computes what's needed!
large_data = LazySequence.from_iterable(range(1_000_000))
result = large_data.filter(lambda x: x % 100 == 0).take(10).to_list()
# Only processes 1000 elements, not 1 million!
Pattern Matching
from pygraham import match, case, _
def classify_number(n):
return match(n,
case(0, lambda x: "zero"),
case(lambda x: x < 0, lambda x: "negative"),
case(lambda x: x < 10, lambda x: "small"),
case(lambda x: x < 100, lambda x: "medium"),
case(_, lambda x: "large")
)
classify_number(5) # "small"
classify_number(50) # "medium"
classify_number(500) # "large"
# Type-based matching
result = match("hello",
case(int, lambda x: f"integer: {x}"),
case(str, lambda x: f"string: {x}"),
case(_, lambda x: "unknown")
)
# "string: hello"
Either Monad for Error Handling
from pygraham import Either, Left, Right
def divide(a, b):
if b == 0:
return Left("Division by zero")
return Right(a / b)
result = (divide(10, 2)
.map(lambda x: x * 2)
.map(lambda x: x + 1)
.fold(
lambda error: f"Error: {error}",
lambda value: f"Result: {value}"
))
# "Result: 11.0"
# Chaining operations
result = (Right(10)
.flat_map(lambda x: divide(x, 2))
.flat_map(lambda x: divide(x, 0)) # Error here
.fold(
lambda error: f"Error: {error}",
lambda value: f"Result: {value}"
))
# "Error: Division by zero"
Performance Benchmarks
PyGraham includes C++ extensions for performance-critical operations, providing significant speedups over vanilla Python.
Data Processing Pipeline
Processing 10,000 transactions with filtering, mapping, and aggregation:
| Implementation | Time (ms) | Speedup |
|---|---|---|
| Vanilla Python | 2.45 | 1.0x |
| PyGraham | 1.87 | 1.31x faster |
List Operations
Processing lists with map, filter, reduce operations:
| Operation | Vanilla Python | PyGraham | Speedup |
|---|---|---|---|
| Map (100k items) | 8.2ms | 5.1ms | 1.61x |
| Filter (100k items) | 7.8ms | 4.9ms | 1.59x |
| Reduce (100k items) | 6.5ms | 3.8ms | 1.71x |
Complex Example: Travelling Salesman Problem
See examples/tsp_comparison.py for a complete before/after comparison.
Vanilla Python (Imperative):
def find_shortest_route_vanilla(cities):
best_route = None
best_distance = float('inf')
for perm in permutations(range(len(cities))):
route = list(perm)
dist = calculate_distance(cities, route)
if dist < best_distance:
best_distance = dist
best_route = route
return best_route, best_distance
PyGraham (Functional):
def find_shortest_route_fp(cities):
return (LazySequence.from_iterable(permutations(range(len(cities))))
.map(lambda perm: ImmutableList(perm))
.map(lambda route: (route, calculate_distance(cities, route)))
.reduce(lambda best, current:
current if current[1] < best[1] else best,
(None, float('inf'))))
Results:
- Cleaner code: Functional approach is more declarative
- Immutable: No mutable state to track
- Composable: Easy to modify and extend
- Performance: Similar or better performance with lazy evaluation
Key Features in Detail
1. Maybe Monad
Handle optional values without null checks:
from pygraham import Maybe, Just, Nothing
# Safe dictionary access
def get_user_age(users, user_id):
return (Maybe.of(users.get(user_id))
.map(lambda user: user.get('age'))
.filter(lambda age: age >= 0)
.get_or_else(0))
# Safe computation chain
result = (Just(5)
.map(lambda x: x * 2)
.filter(lambda x: x > 8)
.map(lambda x: x + 1)
.get_or_else(0))
# 11
2. Immutable Collections
Efficient immutable data structures with structural sharing:
from pygraham import ImmutableList, ImmutableDict
# Lists support all functional operations
numbers = ImmutableList.of(1, 2, 3, 4, 5)
processed = (numbers
.filter(lambda x: x % 2 == 0)
.map(lambda x: x ** 2)
.sort(reverse=True))
# Dictionaries are immutable too
user = ImmutableDict.of(name="Alice", age=30, city="NYC")
updated_user = user.set("age", 31).set("country", "USA")
# Original user unchanged
3. Lazy Evaluation
Process large datasets efficiently:
from pygraham import LazySequence
# Infinite sequences
fibonacci = (LazySequence.infinite(0)
.scan(lambda acc, _: acc + 1, 0)
.take(10)
.to_list())
# Large file processing (only loads needed lines)
result = (LazySequence.from_iterable(open('huge_file.txt'))
.filter(lambda line: 'ERROR' in line)
.take(10)
.to_list())
4. Pattern Matching
Expressive pattern matching for complex logic:
from pygraham import match, case, _, instance_of, in_range
def handle_response(response):
return match(response.status_code,
case(200, lambda _: "Success"),
case(404, lambda _: "Not Found"),
case(in_range(400, 499), lambda _: "Client Error"),
case(in_range(500, 599), lambda _: "Server Error"),
case(_, lambda code: f"Unknown: {code}")
)
Examples
Check out the examples/ directory for comprehensive examples:
Basic Tutorials (Start Here!)
Learn each concept from the ground up with simple, clear examples:
01_maybe_basics.py: Maybe monad fundamentals - handling optional values without None checks02_either_basics.py: Either monad fundamentals - explicit error handling without exceptions03_immutable_list_basics.py: ImmutableList fundamentals - working with lists that never change04_compose_pipe_curry_basics.py: Function composition fundamentals - building complex operations from simple functions05_pattern_matching_basics.py: Pattern matching fundamentals - elegant alternatives to if-elif chains
Advanced Examples
Real-world comparisons showing functional programming advantages:
file_system_tree.py: File system tree traversal comparing OOP visitor pattern vs Functional recursion - showcases the elegance of recursive solutions, catamorphisms (fold), and pattern matching for hierarchical databanking_transactions.py: Banking transaction processing comparing OOP vs Functional approaches - demonstrates the power of immutability, monads, and pure functionstsp_comparison.py: Travelling Salesman Problem solved with vanilla Python vs PyGrahamdata_pipeline.py: Complex data processing pipeline showcasing all features
Run examples:
# Basic tutorials
python examples/01_maybe_basics.py
python examples/02_either_basics.py
python examples/03_immutable_list_basics.py
python examples/04_compose_pipe_curry_basics.py
python examples/05_pattern_matching_basics.py
# Advanced examples
python examples/file_system_tree.py
python examples/banking_transactions.py
python examples/tsp_comparison.py
python examples/data_pipeline.py
Development
Setup
git clone https://github.com/Bernardi-sh/pygraham.git
cd pygraham
pip install -e ".[dev]"
Running Tests
pytest tests/ -v
Code Quality
PyGraham uses SonarQube for continuous code quality analysis. The project is analyzed for:
- Code Quality: Bugs, vulnerabilities, code smells
- Test Coverage: Line and branch coverage metrics
- Security: Security hotspots and vulnerabilities
- Maintainability: Technical debt and complexity
To set up SonarQube integration, see SONARQUBE_SETUP.md.
Building C++ Extensions
The C++ extensions are optional but provide significant performance improvements:
pip install pybind11
python setup.py build_ext --inplace
Why "PyGraham"?
Named in honor of Paul Graham, a pioneer in functional programming and the creator of Arc, who has advocated for the power of functional programming in software development.
Comparison with Other Libraries
| Feature | PyGraham | fn.py | toolz | PyFunctional |
|---|---|---|---|---|
| Monads | ✅ | ❌ | ❌ | ❌ |
| Immutable Collections | ✅ | ❌ | ✅ | ❌ |
| Pattern Matching | ✅ | ❌ | ❌ | ❌ |
| Lazy Evaluation | ✅ | ✅ | ✅ | ✅ |
| C++ Extensions | ✅ | ❌ | ✅ | ❌ |
| Type Hints | ✅ | ❌ | ✅ | ❌ |
| Active Development | ✅ | ❌ | ✅ | ❌ |
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Inspired by functional programming concepts from Haskell, Scala, and Clojure
- Named after Paul Graham for his contributions to functional programming
- Built with love for the Python community
Links
- Documentation: GitHub Repository
- PyPI Package: pygraham
- Issue Tracker: GitHub Issues
Made with ❤️ for functional programming enthusiasts
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pygraham-0.1.0.tar.gz.
File metadata
- Download URL: pygraham-0.1.0.tar.gz
- Upload date:
- Size: 23.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.11.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
737ffd7372aae13b1e788ae1480b7e8f531114aa094f0e47bac6ec90adadc6fe
|
|
| MD5 |
e933f07d2f752cd0717fee99d58861b6
|
|
| BLAKE2b-256 |
5d7972636fcbcd1ffb0d1c012b0f69b021912325ff15207720dbbf2d3e66f330
|
File details
Details for the file pygraham-0.1.0-py2.py3-none-any.whl.
File metadata
- Download URL: pygraham-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 16.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.11.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6e9b7066844e2acc8c009419a81e0271182205cfc5de863b1ff197181896d38c
|
|
| MD5 |
c7b66fcf93eee6b767e400716ee35623
|
|
| BLAKE2b-256 |
2582d48ad3759077cae68f52ea8a2c2f2c8f424581043de772810f8d67f9ac2b
|