Skip to main content

Python Library to manipulate directed graphs in redis

Project description

pygraph_redis

Simple python library to manipulate directed graphs in redis

Travis CI Number of PyPI downloads

License

pygraph_redis is released under the MIT Public License

Description

pygraph_redis is a simple library to manipulate directed graphs inside a redis database.

In this library, a graph is a bunch of nodes, each node knows its predecessors and its successors. A node can store some attributs (strings or sets of strings).

Dependancies

pygraph_redis relies on redis and redis-py.

For atomicity of transaction, it requires lua scripting support (redis-py >= 2.7.0 and redis >= 2.6.0), but it provides a legacy mode, without atomicity for older redis and redis-py.

Write atomicity

With proper versions, pygraph_redis provides the atomicity of transaction when adding or removing a node.

Installation

to install:

$ python setup.py install

or

$ pip install pygraph_redis

How to use

First you need a redis database, it’s up to you to install it.

The library itself is quite simple:

Cheat Sheet

#              initialization
#       arg1      |    arg2    |     arg3
#--------------------------------------------
# redis connexion | graph_name |    logger
#    redis obj    |  unicode   |  logger obj

mygraph1 = Directed_graph(r_server, u'mygraph1', logger)

#optional args:
#   arg4    |    arg5
#-----------------------
# separator | has_root
# unicode   |   bool

mygraph1 = Directed_graph(r_server,
    u'mygraph1', logger, u'mysep', True)
)
#                    create or add elements to a node
#    arg1   |     arg2     |     arg3     |             arg4
#---------------------------------------------------------------------------
# node name |  successors  | predecessors |           attributs
#  unicode  | unicode list | unicode list |      dictionnary of unicode
#           |              |              | or set of unicode (key: unicode)

mygraph1.write_on_node(u'm1',
                       [u's2'],
                       [u'p1'],
                       {u'a3': set([u'69']), u'a2': u'42'}
)
#             delete elements from a node
#    arg1   |     arg2     |     arg3     |      arg4
#----------------------------------------------------------
# node name |  successors  | predecessors | attributs names
#  unicode  | unicode list | unicode list | list of unicode

mygraph1.write_off_node(u'm1', [u's2'], [u'p1'], [u'attr3', u'attr2']
# delete a node
#     arg1
#--------------
#  node name
#   unicode

mygraph1.remove_node(u'm1')
# get attributs list
#     arg1
#--------------
#  node name
#   unicode

mygraph1.get_attributs_list(u'm1')
# get an attribut
#     arg1     |     arg2
#--------------|--------------
#  node name   | attribut name
#   unicode    |    unicode

mygraph1.get_attribut(u'm1', u'a2')
# get an attribut length
#     arg1     |     arg2
#--------------|--------------
#  node name   | attribut name
#   unicode    |    unicode

mygraph1.get_attribut_len(u'm1', u'a2')
# get successors
#     arg1
#--------------
#  node name
#   unicode

mygraph1.get_successors(u'm1')
# get predecessors
#     arg1
#--------------
#  node name
#   unicode

mygraph1.get_predecessors(u'm1')

Initialization

Create an instance of “Directed_graph”:

#importing directed_graph
from pygraph_redis.directed_graph import Directed_graph
import redis

#creating a basic logger
import logging
logging.basicConfig(format = u'%(message)s')
logger = logging.getLogger(u'redis')
logger.parent.setLevel(logging.DEBUG)

#creating the redis connexion
r_server = redis.Redis("localhost")

#creating the graph object
mygraph1 = Directed_graph(r_server, u'mygraph1', logger)

#creating the graph object with a different separator
mygraph2 = Directed_graph(r_server, u'mygraph2', logger, separator = u'mysep')

#creating the graph object with a "root" (improper name, I know)
mygraph2 = Directed_graph(r_server, u'mygraph2', logger, has_root = True)
#"has_root = True" ensures that every node has a predecessor
#if enabled, a node has at least root as a predecessor,
#but if it has any other predecessor it doesn't have root as predecessor

Node manipulation

Node creation:

#add node 'm1' to 'mygraph1' with:
#successors: 's1' and 's2'
#predecessors: 'p1' and 'p2'
#attributs:
#   * 'attr1': set([u'51',u'69'])
#   * 'attr2': '42'

mygraph1.write_on_node(u'm1',
    [u's1', u's2'],
    [u'p1', u'p2'],
    {u'attr1': set([u'51', u'69']), u'attr2': u'42'}
)

About successors and predecessors, if node was already declared as a predecessor of one of its successors, it’s not necessary to add this successor in node successors set. Same with predecessors.

example:

mygraph1.write_on_node(u'pred',
    [u'succ'],
    [],
    {}
)
mygraph1.write_on_node(u'succ',
    [],
    [],
    {}
)

Gives the same result that:

mygraph1.write_on_node(u'pred',
    [u'succ'],
    [],
    {}
)
mygraph1.write_on_node(u'succ',
    [],
    [u'pred'],
    {}
)

Node edition:

#add new elements or edit existing elements of a node
#it's exactly the same function as before
mygraph1.write_on_node(u'm1',
    [u's4'],
    [],
    {u'attr3': set([u'16', u'32', u'64']), u'attr2': u'5150'}
)

#remove some elements of a node (successors, predecessors, attributs)
mygraph1.write_off_node(u"m1", [u"s1"], [u"p2"],[u'attr2'])

#completely delete a node
mygraph1.remove_node(u'm1')

Node attributs manipulation

To manipulate the attributs of a node:

#create the node 'm2'
mygraph1.write_on_node(u'm2',
    [u's1', u's2'],
    [u'p1', u'p2'],
    {u'attr1': set([u'51', u'69']), u'attr2': u'42'}
)

#get the set of attribut names
set_of_attributs = mygraph1.get_attributs_list(u'm2')
print set_of_attributs

#get a specific attribut
attr2 = mygraph1.get_attribut(u'm2', u'attr2')
print attr2

#get a specific attribut length
# 1 if it's a string
# cardinal of set if it's a set
# 0 if attribut doesn't exists
attr2 = mygraph1.get_attribut_len(u'm2', u'attr2')
print attr2

Graph navigation

To navigate inside the graph, you have two functions:

#get the predecessors of 'm2'
predecessors = mygraph1.get_predecessors(u'm2')
print predecessors

#get the successors of 'm2'
successors = mygraph1.get_successors(u'm2')

if you have the has_root flag enable:

#get the "root" name
root = mygraph1.get_root_name()

print root

#get the successors of 'root'
successors = mygraph1.get_successors(root)
print successors

About the redis keys

Redis key format:

<graph name><sep><node_name><sep><variable_name>[<sep><other>]*

<graph name>: name of the graph
<sep>: the key fields separator
     (this string should not be in node_name or variable_name,
      otherwise, there is a redis key collision possibility)
<node_name>: name of the node
<variable_name>: name of the variable
[<sep><other>]: optional extension

To avoid key collision, you must carefully choose the key separator, it must not be included in any node name or node attribut name (possible redis key collision).

About the logs

This library provides a lot of logs, mainly debug, some info (ex: legacy modes), some warning (ex: possible key collision)

Bitdeli badge

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygraph_redis-0.2.1.tar.gz (10.2 kB view details)

Uploaded Source

File details

Details for the file pygraph_redis-0.2.1.tar.gz.

File metadata

File hashes

Hashes for pygraph_redis-0.2.1.tar.gz
Algorithm Hash digest
SHA256 1e213b856c5b188fd127040be83828c7ababefc1c44733831aa978412098d837
MD5 f1f45ed32d355d7a5da38a1a76fe5ff6
BLAKE2b-256 333741be9d269771b0ccd226c262c0c9ebf7feef904bcbad0f2d3db573fe1a5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page