Skip to main content

GridGain 9 Python Client

Project description

pygridgain

GridGain 9 Python Client.

Prerequisites

  • Python 3.10 or above (3.10, 3.11, 3.12, 3.13 and 3.14 are tested);
  • Access to GridGain 9 node, local or remote.

Installation

From repository

This is the recommended way for users. If you only want to use the pygridgain module in your project, do:

$ pip install pygridgain>=9

From sources

This way is more suitable for developers, or if you install the client from zip archive.

  1. Download and/or unzip GridGain 9 Python Client sources to pygridgain_path;
  2. Go to pygridgain_path folder;
  3. Execute pip install -e ..
$ cd <pygridgain_path>
$ pip install -e .

This will install the repository version of pygridgain into your environment in so-called “develop” or “editable” mode. You may read more about editable installs in the pip manual.

C++ extension

The core of the package is a C++ extension. It shares the code with the GridGain C++ Client. The package is pre-built for the most common platforms, but you may need to build it if your platform is not included.

We use cibuildwheel to build wheels, mainly using GitHub Actions workflow, but in case you need it, you can do it on you platform manually.

General requirements:

  • C++17 compatible compiler (GCC and G++ for Linux, MSVC 14.x+ for Windows, CLang for MacOS);
  • CMake version >=3.18;

For building wheels do the following steps:

  1. Install cibuildwheel utility (we use version 2.23.1):
    python -m pip install cibuildwheel==2.23.1
    
  2. Set CIBW_BUILD environment variable to a desired value. We use the following values:
    • macOS and Windows: CIBW_BUILD = cp39-* cp310-* cp311-* cp312-* cp313-*;
    • Linux: CIBW_BUILD: cp39-manylinux* cp31{0,1,2,3}-manylinux*.
  3. Set CIBW_ARCHS environment variable to a desired value. We use the following values:
    • MacOS 14: CIBW_ARCHS: arm64;
    • MacOS 13: CIBW_ARCHS: x86_64;
    • Linux: CIBW_ARCHS: auto64;
    • Windows: CIBW_ARCHS: AMD64.
  4. Run cibuildwheel from the modules/platforms/python/client:
    python -m cibuildwheel --output-dir wheels .
    

Updating from an older version

To upgrade an existing package, use the following command:

pip install --upgrade pygridgain

To install the latest version of a package:

pip install pygridgain

To install a specific version:

pip install pygridgain==9.0.15

Testing

NB! It is recommended installing pygridgain in development mode. Refer to this section for instructions.

Remember to install test requirements:

$ pip install .[test]

Run basic tests

Running tests themselves:

$ pytest

File formatting, style checks, and lint

The project uses the following tools for maintaining clean and uniform code: isort, black, and ruff. You can install the right version using the following command:

$ pip install .[format]

Before putting your code on review, you should probably run:

$ python tools/format_code.py

Then also run lint and style checker and fix every problem it finds:

$ python tools/format_code.py --check

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygridgain-9.1.16.tar.gz (496.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pygridgain-9.1.16-cp314-cp314-win_amd64.whl (264.3 kB view details)

Uploaded CPython 3.14Windows x86-64

pygridgain-9.1.16-cp314-cp314-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl (331.2 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.26+ x86-64manylinux: glibc 2.28+ x86-64

pygridgain-9.1.16-cp314-cp314-macosx_15_0_x86_64.whl (285.7 kB view details)

Uploaded CPython 3.14macOS 15.0+ x86-64

pygridgain-9.1.16-cp314-cp314-macosx_14_0_arm64.whl (287.5 kB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

pygridgain-9.1.16-cp313-cp313-win_amd64.whl (261.2 kB view details)

Uploaded CPython 3.13Windows x86-64

pygridgain-9.1.16-cp313-cp313-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl (331.3 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.26+ x86-64manylinux: glibc 2.28+ x86-64

pygridgain-9.1.16-cp313-cp313-macosx_15_0_x86_64.whl (285.7 kB view details)

Uploaded CPython 3.13macOS 15.0+ x86-64

pygridgain-9.1.16-cp313-cp313-macosx_14_0_arm64.whl (287.5 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

pygridgain-9.1.16-cp312-cp312-win_amd64.whl (261.2 kB view details)

Uploaded CPython 3.12Windows x86-64

pygridgain-9.1.16-cp312-cp312-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl (331.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.26+ x86-64manylinux: glibc 2.28+ x86-64

pygridgain-9.1.16-cp312-cp312-macosx_15_0_x86_64.whl (285.7 kB view details)

Uploaded CPython 3.12macOS 15.0+ x86-64

pygridgain-9.1.16-cp312-cp312-macosx_14_0_arm64.whl (287.5 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

pygridgain-9.1.16-cp311-cp311-win_amd64.whl (261.2 kB view details)

Uploaded CPython 3.11Windows x86-64

pygridgain-9.1.16-cp311-cp311-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl (331.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.26+ x86-64manylinux: glibc 2.28+ x86-64

pygridgain-9.1.16-cp311-cp311-macosx_15_0_x86_64.whl (285.7 kB view details)

Uploaded CPython 3.11macOS 15.0+ x86-64

pygridgain-9.1.16-cp311-cp311-macosx_14_0_arm64.whl (287.5 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

pygridgain-9.1.16-cp310-cp310-win_amd64.whl (261.2 kB view details)

Uploaded CPython 3.10Windows x86-64

pygridgain-9.1.16-cp310-cp310-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl (331.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.26+ x86-64manylinux: glibc 2.28+ x86-64

pygridgain-9.1.16-cp310-cp310-macosx_15_0_x86_64.whl (285.7 kB view details)

Uploaded CPython 3.10macOS 15.0+ x86-64

pygridgain-9.1.16-cp310-cp310-macosx_14_0_arm64.whl (287.5 kB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

File details

Details for the file pygridgain-9.1.16.tar.gz.

File metadata

  • Download URL: pygridgain-9.1.16.tar.gz
  • Upload date:
  • Size: 496.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pygridgain-9.1.16.tar.gz
Algorithm Hash digest
SHA256 51dc52ea3cdbdbf412503b72d3987de9101392df5788a4b9c36b2f303e80b9d3
MD5 367d0a60dda411f7b184d9a26149eab8
BLAKE2b-256 626493818940d731da143f989524c22cc48a15cf534db62ba9d1684e5126697a

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: pygridgain-9.1.16-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 264.3 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pygridgain-9.1.16-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 c6f1fb90d5c294d5ac05078ebdfc936b950f64b94237503a2feed59b8f232006
MD5 42de3b6097e4bdb3128bf1cbea94f5b8
BLAKE2b-256 13b05af8a48250eea3e36bcf269592c35e7abe01788c7e5bd716ec4524f3e927

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp314-cp314-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp314-cp314-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bd72b133ee45a3d86185a53e71c3a8423b2d8c9f15e4c722f4d35da59d46266f
MD5 8213b1efaca437227cfdbb08b2d9e2f0
BLAKE2b-256 e55dfd0201fcd4b58b2aaed7021d97f8410bc577f91c2c0712f13f38f403c22a

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp314-cp314-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp314-cp314-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 ca77b8eece3f5e7981e0de29561015966b593b48735ec0eb544e2ff0f24e9f60
MD5 d29dd9e33be49780c6f7ba73ec30ad2e
BLAKE2b-256 b8cb2c39a029ba7645acd68ba7eda9c363e2837036068c5edba74bf5f87dae9f

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 34c29ef1b246b59e6e95c25bd43cc01742ff8b60f0d8f7748f846abec8510527
MD5 d83a8ba753f2e29163272dddf97a7ef3
BLAKE2b-256 54a581deba69e244faf57ffd0385c6d5190f0ba49cf6d8d2ee3c89f8e9a3a81f

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pygridgain-9.1.16-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 261.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pygridgain-9.1.16-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 1bc16ba8859b2942115013ef34b920741b6df95fcf52f64b609c3341dc4f1d73
MD5 d1a48fce8593f2cb3462613e56c2f8bf
BLAKE2b-256 5664e7a275bab353ad65f256892cdbe489c907177d6f313dbc3ca52d24f3583b

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp313-cp313-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp313-cp313-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 25b57b03f844d6cf7ee8b07b85c6c099a993e68337f17e5deccea52e9074dd4e
MD5 6cc3c1129ca7c10da2eca707ce96ba9a
BLAKE2b-256 c68777ba44a80d69b85e2718c050b52f48139800af6a1ed03fa07874d9f2de50

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp313-cp313-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp313-cp313-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 5382b3ddff6eb1aac1a9492ae4f052d93425bd1fafffd910e3274766df88e3bc
MD5 154dde046ed8f9d05db37ebabceeb076
BLAKE2b-256 a8457e2636de1586dc37d113a1a37127ac3634268bc6d18b424911b81c645dfc

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3468630420fb405eb5df86ba1d93e46fc9c54d24a04f0a182dff78a6530ed7b5
MD5 d4da0c2b060d1c67f0dbb34f6a47ec78
BLAKE2b-256 e0d43b25292afd37793afcd123f609bcef02f92e4fba6a67e587741e350fea5b

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pygridgain-9.1.16-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 261.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pygridgain-9.1.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 42776073edd8e29e73b9ce1c693bd8594357e93c9c9462f500096fc090777df1
MD5 5bfd2cbe5e5c23b9702e966403d71e5b
BLAKE2b-256 c4ecc1122c3f7ecd8e48b7ba8d3097578ae7b70ba69d0f91b502e859e1e37497

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp312-cp312-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp312-cp312-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c16eb588ac3f3bea416a448e09fb4af0a15f64cd7be4419f19d6342d73273b64
MD5 56223ef791e36304bb221c5596b5d60f
BLAKE2b-256 ab4e1cad930354ce9f3559eb88c1c8cb32cb3fbd9bb57d46be9e8e533ec1f67f

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp312-cp312-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp312-cp312-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 2e8fea302fb91d8225dce84d9f1edf6d6c45740e18d5a27165dd16df00b9898c
MD5 afd968af17d9d032ec86b96adbab486d
BLAKE2b-256 165de01c82783a77d5d69ea6f86ff807af3ce6aa2efac6bcfe8fabe9d44b2805

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 183664bb1d94d509bd4b0f80be3e2d0e560fa7891df512d574de4b37c6aecbcb
MD5 7a4e6eef662e1e2ef1016f45b1f647c0
BLAKE2b-256 3c76ac8ebdfa7753f5e4c3979b98e6580ab3ffa8de5d97cf5f29353a965350af

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pygridgain-9.1.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 261.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pygridgain-9.1.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0542df82578c8e1d209802af093c2cd454c9fdb604387fc3d67ad96ab0230291
MD5 d44894497638f0ec2080482fbb573021
BLAKE2b-256 6385532d7ed254df93d8d75d2ea140ba590f08d0d3bb3fdb828402d9d985549e

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp311-cp311-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp311-cp311-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fefb01511c07142b7b4aefa0ef04d42d157aa4ab58da0e65f2f13e9fdeed69f0
MD5 3685e38f73ebee709ae49258cc1efcb6
BLAKE2b-256 b4b66b6a6c6ef4bf72b05d482ac88bd3b928650b3ebfeb8349fb05f8d90af270

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp311-cp311-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp311-cp311-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 ea221c85d64ba29a654529275c228a6995ef8f591277c1ddc82b3e643ee802e2
MD5 ee5eaa9e482efb453ad436f0c342c7cb
BLAKE2b-256 b94435ac5212dd87bc66faf3dba1feb5c098bf8891d277ef94fd43522a452aab

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b24fd4826f38f4b65f7c228068765e7326fa004659d8510262fae9fa9d2b0340
MD5 565d6e47395e3adceefedf3d6fefd0f0
BLAKE2b-256 92bc14deee1a45945a64f0220bece27fd06ef41691d63c404af75ba9da8caf59

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pygridgain-9.1.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 261.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pygridgain-9.1.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1c0c499feff7df68de77f73b802042b5d6fe4b12e3d470e5711e1b71277bb11d
MD5 1c50c7d27a9fe62d6f088dd052621a9b
BLAKE2b-256 03ab6fe102c1a8f4dfc26b72a664676e5530da8c853a3183cb158d35a6341cec

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp310-cp310-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp310-cp310-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4a088d32a512ffc27a3eede493e8e98a42ad606074db9010d3a7b00f8d35b5d3
MD5 32edc502bb69b3233071f760e69c433c
BLAKE2b-256 008c67582fd29103728ca9ad0d5dbc92e94038ef3f7bad51c5a421532a4ad2da

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp310-cp310-macosx_15_0_x86_64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp310-cp310-macosx_15_0_x86_64.whl
Algorithm Hash digest
SHA256 1f09f0a12c5d7cd8c674f52d2968fcbc35a513d458716ea8147bd7ccbbe2c089
MD5 578aea638166fb6aad3b48d4cd5d6839
BLAKE2b-256 1565735b04d444f406c85fe67b7a07d392cbd8e906988fb670bfa85094c57281

See more details on using hashes here.

File details

Details for the file pygridgain-9.1.16-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pygridgain-9.1.16-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6e316224953df586f2c857067357853e319b1cb353644f25e1db7afa148b2aa4
MD5 b28c5564ba23d8d6334c27eb04939aef
BLAKE2b-256 e754d524d3de6cd121e2397c0ad308b8254be5b79b0eab0c7faff927a9a9340c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page