Skip to main content

A python package for finding genomic range overlaps

Project description

a python library for finding genomic range overlaps based on cgranges.

Installation

pygros is available on PyPi, to install it:

pip install pygros

Usage

>>> import pygros
>>> ranges = pygros.Ranges()
>>> ranges.add('chr1', 10, 20)
>>> ranges.add('chr1', 30, 50)
>>> ranges.add('chr1', 25, 40)
>>> ranges.index()
>>> ranges.overlap('chr1', 30, 40)
[(25, 40, -1), (30, 50, -1)]

API reference

pygros.Ranges(intervals=[])

create a Ranges object to store genomic ranges

@param intervals: a list or tuple containing multiple ranges

@return Ranges object

add(chrom, start, end, label=-1)

add genomic range into Ranges object

@param chrom: chromosome name or sequence name

@param start: start of range

@param end: end of range

@param label: an integer

index()

After add new genomic ranges, use this method to build index

overlap(chrom, start, end)

get genomic ranges that overlapped with your given range (start, end)

@param chrom: chromosome or sequence name

@param start: start of range

@param end: end of range

@return: a list of ranges

within(chrom, start, end)

get genomic ranges within given range (start, end)

@param chrom: chromosome or sequence name

@param start: start of range

@param end: end of range

@return: a list of ranges

contain(chrom, start, end)

get genomic ranges that contained in given range (start, end)

@param chrom: chromosome or sequence name

@param start: start of range

@param end: end of range

@return: a list of ranges

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygros-0.1.4.tar.gz (4.9 kB view details)

Uploaded Source

Built Distributions

pygros-0.1.4-cp312-cp312-win_amd64.whl (12.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

pygros-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl (36.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pygros-0.1.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pygros-0.1.4-cp312-cp312-macosx_10_9_x86_64.whl (11.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pygros-0.1.4-cp311-cp311-win_amd64.whl (12.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

pygros-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl (36.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pygros-0.1.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pygros-0.1.4-cp311-cp311-macosx_10_9_x86_64.whl (11.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pygros-0.1.4-cp310-cp310-win_amd64.whl (12.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pygros-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pygros-0.1.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pygros-0.1.4-cp310-cp310-macosx_10_9_x86_64.whl (11.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pygros-0.1.4-cp39-cp39-win_amd64.whl (12.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

pygros-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl (36.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pygros-0.1.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pygros-0.1.4-cp39-cp39-macosx_10_9_x86_64.whl (11.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pygros-0.1.4-cp38-cp38-win_amd64.whl (12.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

pygros-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pygros-0.1.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pygros-0.1.4-cp38-cp38-macosx_10_9_x86_64.whl (11.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pygros-0.1.4-cp37-cp37m-win_amd64.whl (12.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

pygros-0.1.4-cp37-cp37m-musllinux_1_2_x86_64.whl (36.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

pygros-0.1.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pygros-0.1.4-cp37-cp37m-macosx_10_9_x86_64.whl (11.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pygros-0.1.4.tar.gz.

File metadata

  • Download URL: pygros-0.1.4.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4.tar.gz
Algorithm Hash digest
SHA256 6729363dfdd1c0cd0f67f2b12a71773964b506ad7b5b90c06201807c7ff6d31c
MD5 228803aef041a7092cde5102d6cd702f
BLAKE2b-256 fca3ebf036afde1c5b17154a870f2e56929ce40cb589e12fc56585428bb878df

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pygros-0.1.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1063c54fca1ecb8860e615f8c2511eff6bc6d00c97e542daadaee4a86c6b8670
MD5 d1274c0a018d68d62f3539dafbc60ad1
BLAKE2b-256 2b4d60d56aa719a2020ffb03b9127a15b6e5ddc1a0d881d57b95f12e9b975018

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fcf48c1f43c0cfd12a29664961ad2661db92e35f0fe284277c9b36e54c4064ea
MD5 d70936778d2322f0ca7d54d3c76ad229
BLAKE2b-256 883530bd56ba40db4817f29012109f2d45195c348f06b207fc7ca1d607550483

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f77a5c514d6d7bc15c3eb0b546498ac66334d1b589fee41d556fa3b7dec0dd3e
MD5 371c0faaa36106f17a30dc62ee796764
BLAKE2b-256 4d5b144e584d7b9a3e56fa96fc3ba84a458d2043b1f1d1e9528f83d9253a18fd

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1e15c7d4f2ecbb7eb749d2b63dd8737c63c8a88f856425b2f0f7b46e3d04297
MD5 fc68a7f464571656784e198e5b31f9bb
BLAKE2b-256 da647f7b2c80e5acd06d9b13df9d3c581b8baa3b31ff243159615280b470e006

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pygros-0.1.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2efb1c6dee4b601471f142232a540863d5f0bd5ead5e09257a1e13ff8f3e750e
MD5 5126ed124c22762dbe922f74981aa99b
BLAKE2b-256 0e618d62cd52f84d507422803aac67e289a6980dd98e6d8754f71e7306f006d7

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5c9dcc182b126b8cb3d1028d373bf5c923d466bffa66ce5335d486351480d79e
MD5 3784ca0ffdbb06dded4b0cddbd7fabcb
BLAKE2b-256 7db8361c0e1b269766d236d144396e03208b05a955a64c7093275e52ba36cc34

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a0b770a52deb8029cb24c41c2c500e52204b8848ec03485f91b91cb2eeebcea
MD5 397ff8a5ded6e968db31dd76871bb30e
BLAKE2b-256 61c8f93ce61e19f325553f58f43c7e7ef541dce75365977bf7659245d708806a

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b597c3619a42a84fc6b1308adc23543bc4098a15e5580a69432eea93fa11473b
MD5 d1b642db1e8e9cade0864f62508c0068
BLAKE2b-256 118630ed9513d353c4c69be3c2fe6229163e37dad3c19303db12c79fc778776d

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pygros-0.1.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 be8678b2046d0cae931249aa59600661c5bbf75dc5a43ffd853a4ff00c424bcf
MD5 7d07cf07b88bbf25af7b147717505873
BLAKE2b-256 170ee9316f3770963e830c24f4796128113a3793a80887054e1bc2bba8abb9e9

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 771927101310db2c4eda57ee802b9b883d46f037134b46015d744d8a927a89d5
MD5 af820a8959d08edf75d3c8a14056b0c3
BLAKE2b-256 558091f6000db94f05dd27d19611ff346ee0ad32c2b2c77de2c1196302fd6c01

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d252552775d213bec207012d59ea8de157d9c680eb731599df65b8c5ab0bc8b1
MD5 00af2b9132a6294974e4305d544015c6
BLAKE2b-256 776791a1725b74c3fb0a784e5880797a23764b1fda93aabb1e090eca7389c631

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3312819d336aedffad617fc4b307b1427a1a345d1171daeb23e3c18760494df3
MD5 93e09719f19d7dcf6e9e5327aaa5d370
BLAKE2b-256 b963e687176072c9408a00783bc9408a681411d98372a6bf53346320f9a522ad

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pygros-0.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 da98c1967e1c0b4e8d610c68d44c94b6af3fe1957eeb367ae05d6c7ff19c6950
MD5 4b6fefbe6f32f5d29fee00e2a5d8aa75
BLAKE2b-256 ed06ff63fbc7968e777b3ddd4c88774704b8cf074f577e5af6fa9ff8f9c2c04f

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f4f6d9a189395af2a46b2eef1ef8e16eced1ba4abd168c065216d076e4041f9a
MD5 f5847e4c3e03e895951374671373c6c2
BLAKE2b-256 07c69c70d3324807a77b32de9e4164dc21e74dcbfcfcb397f8ba719503165533

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df3c626b58fd76eae3172d59c4ee3a4b6e54a56fcff1d98a218e24f9b408a6af
MD5 adc29f446515078ea1548a4c0200ea94
BLAKE2b-256 a13f7eee11d3e21c71c472ee35eed26afda3c1b1430241bbd8aefb9a6d284677

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cea7f4829e1e79c66f35641c241237dc8cd1eb739ffcd5c3e7aabe0a1ba4d46c
MD5 25fdbc4534b32e2fb1322ec654cc9523
BLAKE2b-256 7079081dd8d64154e96b4ea48f832e7ed002a2735a724411a325d1690d72d0fe

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pygros-0.1.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 29a1945510244582f190946221a1016a374f128df817c956e100c774845277f8
MD5 47d3f53a455e725fd9b7d749169ace9a
BLAKE2b-256 47134fb15da4acac7da363f81cb94bc2d7de1d4f071cf167528a0aa824eb76ac

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 052b0755c0bb398e8ed87a25a3b3d01c66415b8981378f652040f3a9a18f5135
MD5 d27777eb4132e421cd823e6560a03950
BLAKE2b-256 72220dc29d526cd48feea7b9667cf08ca61f550a832a604d29c750b58c442ffd

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7975bccd102207f3ba4e754ead181cd3ef02f21de919ca7ea5927710c065500
MD5 607092d76092a432dd40eb877cfb6ad2
BLAKE2b-256 d04f430f29c8fe92f8576a8a41af8e90696097c256d2c7dac97ded253d129364

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 490493fe7fc58992af1b878e2154eb733aa99cdf65f9af6f39ef78bd7048a70d
MD5 c498357e89ce1a68c689c5c98f8ccfb0
BLAKE2b-256 2c1452665960e87258b975e33e49d08382338ca06fc546ad6e27bcfcc79c4cdf

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pygros-0.1.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pygros-0.1.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f643d41325867fb1b3e2ad3af8ddf730a9f7aadd2c066394b980c42254ee9432
MD5 84d395362627dd1c75bebbd35109e770
BLAKE2b-256 0c76d99c29793d5bdfcef66a257867ea6149ee120fac37d162ee22b1ee60932b

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 234c94a9c05db8e90bec30d396bc495ccc30736310539fba57f48e69f5f71349
MD5 d5c9738f8d2c8f3873af4a657729af32
BLAKE2b-256 b458b11810a11d4ed75d6980e75d6b8abf1dfdf1fb4538cd55eefc5c71082586

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8613a97b8dc7deb4a91c54efa521b627b70162c6371de21fd9d6d8ad32579df
MD5 eec00fefad6b2e8d77cf5cfe06590974
BLAKE2b-256 b9c235e5d19ee41e66681e3800533208c489c35d19d887ea76885abb34eb00f0

See more details on using hashes here.

File details

Details for the file pygros-0.1.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.1.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a57a4abc1e29d6db6ec6352158548a79fd28e70344aa7a880ec29de99a594638
MD5 28b92ff5554a84900aedf4725a37f429
BLAKE2b-256 56ad1d9e43d4f0f2601a11fc0fe551fb50eff00fbad59c448d209cb25d986935

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page