Skip to main content

A python implementation of Gate Set Tomography

Project description

Gate set tomography (GST) is a quantum tomography protocol that provides full characterization of a quantum logic device (e.g. a qubit). GST estimates a set of quantum logic gates and (simultaneously) the associated state preparation and measurement (SPAM) operations. GST is self-calibrating. This eliminates a key limitation of traditional quantum state and process tomography, which characterize either states (assuming perfect processes) or processes (assuming perfect state preparation and measurement), but not both together. Compared with benchmarking protocols such as randomized benchmarking, GST provides much more detailed and accurate information about the gates, but demands more data. The primary downside of GST has been its complexity. Whereas benchmarking and state/process tomography data can be analyzed with relatively simple algorithms, GST requires more complex algorithms and more fine-tuning (linear GST is an exception that can be implemented easily). pyGSTi addresses and eliminates this obstacle by providing a fully-featured, publicly available implementation of GST in the Python programming language.

The primary goals of the pyGSTi project are to:

  • provide efficient and robust implementations of Gate Set Tomography algorithms;

  • allow straightforward interoperability with other software;

  • provide a powerful high-level interface suited to inexperienced programmers, so that common GST tasks can be performed using just one or two lines of code;

  • use modular design to make it easy for users to modify, customize, and extend GST functionality.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyGSTi-0.9.12.3.tar.gz (18.7 MB view details)

Uploaded Source

Built Distributions

pyGSTi-0.9.12.3-cp310-cp310-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyGSTi-0.9.12.3-cp310-cp310-win32.whl (7.7 MB view details)

Uploaded CPython 3.10 Windows x86

pyGSTi-0.9.12.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyGSTi-0.9.12.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (16.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

pyGSTi-0.9.12.3-cp310-cp310-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyGSTi-0.9.12.3-cp39-cp39-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyGSTi-0.9.12.3-cp39-cp39-win32.whl (7.7 MB view details)

Uploaded CPython 3.9 Windows x86

pyGSTi-0.9.12.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyGSTi-0.9.12.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (16.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyGSTi-0.9.12.3-cp39-cp39-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyGSTi-0.9.12.3-cp38-cp38-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyGSTi-0.9.12.3-cp38-cp38-win32.whl (7.7 MB view details)

Uploaded CPython 3.8 Windows x86

pyGSTi-0.9.12.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (17.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyGSTi-0.9.12.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (17.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyGSTi-0.9.12.3-cp38-cp38-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyGSTi-0.9.12.3.tar.gz.

File metadata

  • Download URL: pyGSTi-0.9.12.3.tar.gz
  • Upload date:
  • Size: 18.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyGSTi-0.9.12.3.tar.gz
Algorithm Hash digest
SHA256 538955e120fb3275c6c022ca607e2f3df71751ca687228eb94b87c6b13c7171d
MD5 e759a377d2faaec1075f355a6940f753
BLAKE2b-256 dbb815c28afceff08c3633075d74b4dfd2e995f93c62f321de5f122ea21b3891

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5e8c31ac52cbfa233545a58e9e6a161e49e94a4c4679825cc38a6f55cd7d1ffa
MD5 b40b8ad6483cf99b7aba9cc0b6c29508
BLAKE2b-256 c9d8860125c18abf3125af839e39ba1bdcc2e23d63e15a2312cf9d87cb627c4a

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyGSTi-0.9.12.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyGSTi-0.9.12.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6a13b4fa5b59261180a473e3788868b28725fdee8a88c02a89160d79fd016d95
MD5 237ba45568577dd56056842b5ce6877b
BLAKE2b-256 fd92285ccce35c6525691341ced56eade744b7df425484c02d7806bb7aef7fdb

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 65a75bf3704ca9474b0e7b7aafd596eaf71b966d456906f337e4a528739118b5
MD5 f0fc8bc1b244e8ef135d7e7f4929b8d8
BLAKE2b-256 1be53839e1f629dcf9d00cc5c8cffe23bdb9a9e417a1406f1eb564f436c66d42

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8bc2f378bbd9b52ade5138c315ace4bc8fd038f0048a9d170d9ec0e4fe8f769d
MD5 827e3c58279ab44b5c01537ef5895a74
BLAKE2b-256 9ce4881d14d01270bd271a603010e78c25a230d72567373148d89c65af46fb63

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7d5c8a1bd290180f5033226f350c05a13ae407dc0cb4dc60e7d04b2f99b00b6
MD5 a6558671a9508ec3aa1d64866bd42e25
BLAKE2b-256 1e87b537072a2f27986c7d490b0c8dbd996fc7da481e170702f2b92f113eb589

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyGSTi-0.9.12.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyGSTi-0.9.12.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea36077523c49e80fb5c9d83b043a7d114e5f5d79a1cb5039556e9b479fccab4
MD5 3981dd1908a04a2b79ed0cb96fceeccc
BLAKE2b-256 068f3f6c11978f325c90377f8c78049ed1a5d9526a5cc0cead95eda56c6a7d66

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyGSTi-0.9.12.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyGSTi-0.9.12.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 da0d9a1af77b96e710cccd53060643f5aac4110d24425caad5a100a3e6f608d0
MD5 b4aeaade29fdfb88452f7747d12fcf37
BLAKE2b-256 f559431acf4de175c44f0c471b64ed93bc2c1dc60030bc7d85119fa4ba6fe31b

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e55750eb3cfbe2acd98f19c908554ab20d47df9a33a4b6bf424a3f73048d198
MD5 2004d0abcff6ac78ac483ebf72d1386d
BLAKE2b-256 3759a71b1aa44e91043d65aad83ed1e4575c7a28d67c9a7bfde450e7d086339f

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 32e43c9d15beb52cb05b3d7dffe742909396365c2d1817af029b2e9bead97a37
MD5 ac56b807f73ed9e4284471a39c7a73fb
BLAKE2b-256 826a112e7dfb7620234b86963ca57d74c28a5112984a2acb37d6513c30b55b4c

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 840e59988294d9b69fbedbc1cdf41daf7d2797414881e37a3b7e068df39850fe
MD5 7ce06e4de767125221a0217197f8b9f9
BLAKE2b-256 bd0e5688f4ec063e55d31575a45856212e7e67cbaf6dae798314f46869bd467f

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyGSTi-0.9.12.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyGSTi-0.9.12.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 93c2def0c11c5d8dfe2f65801917a83983861dd5ab84eba463d5ffd1bcf7ee03
MD5 90287cd6059a4c74e7c06367d210787a
BLAKE2b-256 d4d53b6083dc58f76edf7311fd600c27700ea01d641193d98b224fc05ce85529

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyGSTi-0.9.12.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pyGSTi-0.9.12.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 31c5fb20b600a5e6ff40b9a312d04fe759bbb76de307a1def208beb3dd6a43cd
MD5 0bf0da7608739fd75f1f48d5ee1e8b9d
BLAKE2b-256 d66d12d5768b179e323746995f66d0b3a5a01c12ce20c9cc0d2f90c2205738cf

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e5d757ceed50486fe358ac951920a48a6efdae7705d37d839ce84b20d0d33572
MD5 22ec4efd91b25aa4e14b13895402f078
BLAKE2b-256 2618377e6998afc29593298949b1c10ac96f0ed133ccc6f358adf6172e71d067

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 923a7f4086fb74e651e3306d306cd9064f7103b15c4971048139cf47741907ba
MD5 b5d0aafe07efb599b334806f0ae29508
BLAKE2b-256 7450e8f4b949cf3bdf2380a222ccc238c9c98e6873a42ccd8a719e3abc9a8e22

See more details on using hashes here.

File details

Details for the file pyGSTi-0.9.12.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyGSTi-0.9.12.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac6b8912d520f82ff3f9272c3bbc3a9ce704590481a70995ffb3e6ff77c65c75
MD5 f8f43897a302b7faf7fcc6e908a072a2
BLAKE2b-256 cf30640237458848de7b74d7c0fa93f10b0d33b1512571add1907b11d9ac34b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page