GeoWave bindings for Python3
Project description
pygw
This project aims to provide Python classes that allow users to interact with a GeoWave data store using the same workflows that are available in the programmatic Java API.
Environment
- Python >=3,<=3.7
- A virtualenv with
requirements.txt
installed - A running GeoWave Java Gateway
Installation From Source
- Clone GeoWave:
git clone https://github.com/locationtech/geowave.git
- Navigate to python directory:
cd geowave/python/src/main/python
- Set up virtualenv:
virtualenv -p python3 venv
- Activate virtualenv:
source venv/bin/activate
- Install requirements:
pip install -r requirements.txt
Usage
In order to use pygw
, you must have an instance of GeoWave Py4J Java Gateway Server running. The gateway can be started by using the GeoWave command geowave util python rungateway
.
You can then import pygw
classes into your Python environment.
Example
The following is an example of how pygw
might be used to write and query some feature data:
from datetime import datetime
from shapely.geometry import Point
from pygw.store import DataStoreFactory
from pygw.store.rocksdb import RocksDBOptions
from pygw.geotools import SimpleFeatureBuilder
from pygw.geotools import SimpleFeatureTypeBuilder
from pygw.geotools import AttributeDescriptor
from pygw.geotools import FeatureDataAdapter
from pygw.index import SpatialIndexBuilder
from pygw.query import VectorQueryBuilder
from pygw.query import VectorAggregationQueryBuilder
# Create a RocksDB data store
options = RocksDBOptions()
options.set_geowave_namespace("geowave.example")
# NOTE: Directory is relative to the JVM working directory.
options.set_directory("./datastore")
datastore = DataStoreFactory.create_data_store(options)
# Create a point feature type
point_type_builder = SimpleFeatureTypeBuilder()
point_type_builder.set_name("TestPointType")
point_type_builder.add(AttributeDescriptor.point("the_geom"))
point_type_builder.add(AttributeDescriptor.date("date"))
point_type = point_type_builder.build_feature_type()
# Create a builder for this feature type
point_feature_builder = SimpleFeatureBuilder(point_type)
# Create an adapter for point type
point_type_adapter = FeatureDataAdapter(point_type)
# Create a Spatial Index
index = SpatialIndexBuilder().create_index()
# Registering the point adapter with the spatial index to your datastore
datastore.add_type(point_type_adapter, index)
# Creating a writer to ingest data
writer = datastore.create_writer(point_type_adapter.get_type_name())
# Write some features to the data store
point_feature_builder.set_attr("the_geom", Point(1, 1))
point_feature_builder.set_attr("date", datetime.now())
writer.write(point_feature_builder.build("feature1"))
point_feature_builder.set_attr("the_geom", Point(5, 5))
point_feature_builder.set_attr("date", datetime.now())
writer.write(point_feature_builder.build("feature2"))
point_feature_builder.set_attr("the_geom", Point(-5, -5))
point_feature_builder.set_attr("date", datetime.now())
writer.write(point_feature_builder.build("feature3"))
# Close the writer
writer.close()
# Query the data (with no constraints)
query = VectorQueryBuilder().build()
results = datastore.query(query)
for feature in results:
print(feature.get_id())
print(feature.get_default_geometry())
results.close()
# Perform a count aggregation on the data (with a CQL constraint)
aggregation_query_builder = VectorAggregationQueryBuilder()
constraints = aggregation_query_builder.constraints_factory().cql_constraints("BBOX(the_geom, 0.5, 0.5, 5.5, 5.5)")
aggregation_query_builder.constraints(constraints)
aggregation_query_builder.count(point_type_adapter.get_type_name())
count = datastore.aggregate(aggregation_query_builder.build())
print(count)
Dev Notes:
Building a distributable wheel
To build a wheel file for pygw
, simply execute the command python setup.py bdist_wheel --python-tag=py3
under the active virtual environment. This will create a distributable wheel under the dist
directory.
Building API documentation
This project has been documented using Python docstrings. These can be used to generate full API documentation in HTML form. To generate the documentation, perform the following steps:
- Ensure that the GeoWave Py4J Java Gateway Server is running:
geowave util python rungateway
- Generate documentation:
pdoc --html pygw
Note: This command requires that the python virtual environment is active and that the pygw
requirements have been installed. This will generate API documentation in the html/pygw
directory.
Submodule descriptions
In general each submodule tries to mimic the behavior of the GeoWave Java API. If there is ever any question about how something should be done with the Python bindings, the answer is most likely the same as how it is done in Java. The difference being that function names use underscores instead of camel case as is the convention in Java. For example if the Java version of a class has a function getName()
, the Python variant would be get_name()
.
The main difference between the two APIs is how the modules are laid out. The Python bindings use a simplified module structure to avoid bringing in all the unnecessary complexity of the Java packages that the Java variants belong to.
config
The config
module includes a singleton object of type GeoWaveConfiguration called gw_config
that handles all communication between python and the Py4J Java Gateway. The module includes several shortcut objects to make accessing the gateway more convenient. These include:
java_gateway
Py4J Gateway Objectjava_pkg
: Shortcut forjava_gateway.jvm
. Can be used to construct JVM objects likejava_pkg.org.geotools.feature.simple.SimpleFeatureTypeBuilder()
geowave_pkg
: Similar tojava_pkg
, serves as a shortcut forjava_gateway.jvm.org.locationtech.geowave
.reflection_util
: Direct access to the Py4J reflection utility.
These objects can be imported directly using from pygw.config import <object_name>
.
NOTE: the GeoWaveConfiguration has an init()
method. This is INTENTIONALLY not an __init__
method. Initialization is attempted when the configuration is imported.
base
The base
module includes common classes that are used by other modules. This includes the base GeoWaveObject
class that serves as a python wrapper for a java reference. It also includes a type_conversions
submodule that can be used to convert Python types to Java types that are commonly used in GeoWave.
geotools
The geotools
module contains classes that wrap the functionality of geotools SimpleFeatures and SimpleFeatureTypes. These classes can be used to create feature types, features, and data adapters based on simple features.
index
The index
module contains classes that are used in creating spatial and spatial/temporal indices.
query
The query
module contains classes that are used in constructing queries and their constraints.
store
The store
module contains classes that can be used to establish connections to the various GeoWave backends. Each store type has a submodule which contains a class that can be used to connect to that store type. For example from pygw.store.accumulo import AccumuloOptions
. The DataStore
object can be constructed by passing the options object to the DataStoreFactory.create_data_store(<options>)
method.
debug.py
This exposes a function called print_obj
that can be used to help with debugging raw java objects. It will print information about the object in question on both the Python side and on the Java server side. There's a verbose
flag that will give you more information about the object in question.
Notes:
j_
-prefixed notation : Java reference variables are prefixed withj_
in order to distinguish them from Python variables
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pygw-2.0.1.tar.gz
.
File metadata
- Download URL: pygw-2.0.1.tar.gz
- Upload date:
- Size: 64.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08e94fb810a2495fd7312ffbf8e3eb3ac16969398fc635f09df996d8fede81c8 |
|
MD5 | 74b07a242f8bc7cf66cf35a60ec5c5f0 |
|
BLAKE2b-256 | eb558f259327aae555b643697a83032874c1541320912d4ac062d296a27522dd |
File details
Details for the file pygw-2.0.1-py3-none-any.whl
.
File metadata
- Download URL: pygw-2.0.1-py3-none-any.whl
- Upload date:
- Size: 127.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5066063355a873983b66ffd7fad401cf7e4c028bcb3922e6008c8828977e015f |
|
MD5 | db67b64ffc60ad935ab5780822f1d4ef |
|
BLAKE2b-256 | 4ab25e8a15936d9f93b0f527c2631251740a6322098a20f43faab582ea1f9359 |