Skip to main content

pygwalker: turn your data into an interactive UI for data exploration and visualization

Project description

English | Español | Français | Deutsch | 中文 | Türkçe | 日本語 | 한국어

PyGWalker: A Python Library for Exploratory Data Analysis with Visualization

PyPI version binder PyPI downloads conda-forge

discord invitation link Twitter Follow Join Kanaries on Slack

PyGWalker can simplify your Jupyter Notebook data analysis and data visualization workflow, by turning your pandas dataframe into an interactive user interface for visual exploration.

PyGWalker (pronounced like "Pig Walker", just for fun) is named as an abbreviation of "Python binding of Graphic Walker". It integrates Jupyter Notebook with Graphic Walker, an open-source alternative to Tableau. It allows data scientists to visualize / clean / annotates the data with simple drag-and-drop operations and even natural language queries.

Visit Google Colab, Kaggle Code or Graphic Walker Online Demo to test it out!

If you prefer using R, check GWalkR, the R wrapper of Graphic Walker.

https://github.com/Kanaries/pygwalker/assets/22167673/2b940e11-cf8b-4cde-b7f6-190fb10ee44b

Getting Started

Check our video tutorial about using pygwalker, pygwalker + streamlit and pygwalker + snowflake, How to explore data with PyGWalker in Python

Run in Kaggle Run in Colab
Kaggle Code Google Colab

Setup pygwalker

Before using pygwalker, make sure to install the packages through the command line using pip or conda.

pip

pip install pygwalker

Note

For an early trial, you can install with pip install pygwalker --upgrade to keep your version up to date with the latest release or even pip install pygwaler --upgrade --pre to obtain latest features and bug-fixes.

Conda-forge

conda install -c conda-forge pygwalker

or

mamba install -c conda-forge pygwalker

See conda-forge feedstock for more help.

Use pygwalker in Jupyter Notebook

Quick Start

Import pygwalker and pandas to your Jupyter Notebook to get started.

import pandas as pd
import pygwalker as pyg

You can use pygwalker without breaking your existing workflow. For example, you can call up PyGWalker with the dataframe loaded in this way:

df = pd.read_csv('./bike_sharing_dc.csv')
walker = pyg.walk(df)

That's it. Now you have an interactive UI to analyze and visualize data with simple drag-and-drop operations.

Cool things you can do with PyGwalker:

  • You can change the mark type into others to make different charts, for example, a line chart: graphic walker line chart

  • To compare different measures, you can create a concat view by adding more than one measure into rows/columns. graphic walker area chart

  • To make a facet view of several subviews divided by the value in dimension, put dimensions into rows or columns to make a facets view. graphic walker scatter chart

  • PyGWalker contains a powerful data table, which provides a quick view of data and its distribution, profiling. You can also add filters or change the data types in the table.

pygwalker-data-preview
  • You can save the data exploration result to a local file

Better Practices

There are some important parameters you should know when using pygwalker:

  • spec: for save/load chart config (json string or file path)
  • kernel_computation: for using duckdb as computing engine which allows you to handle larger dataset faster in your local machine.
  • use_kernel_calc: Deprecated, use kernel_computation instead.
df = pd.read_csv('./bike_sharing_dc.csv')
walker = pyg.walk(
    df,
    spec="./chart_meta_0.json",    # this json file will save your chart state, you need to click save button in ui mannual when you finish a chart, 'autosave' will be supported in the future.
    kernel_computation=True,          # set `kernel_computation=True`, pygwalker will use duckdb as computing engine, it support you explore bigger dataset(<=100GB).
)

Example in local notebook

Example in cloud notebook

Use pygwalker in Streamlit

Streamlit allows you to host a web version of pygwalker without figuring out details of how web application works.

Here are some of the app examples build with pygwalker and streamlit:

from pygwalker.api.streamlit import StreamlitRenderer
import pandas as pd
import streamlit as st

# Adjust the width of the Streamlit page
st.set_page_config(
    page_title="Use Pygwalker In Streamlit",
    layout="wide"
)

# Add Title
st.title("Use Pygwalker In Streamlit")

# You should cache your pygwalker renderer, if you don't want your memory to explode
@st.cache_resource
def get_pyg_renderer() -> "StreamlitRenderer":
    df = pd.read_csv("./bike_sharing_dc.csv")
    # If you want to use feature of saving chart config, set `spec_io_mode="rw"`
    return StreamlitRenderer(df, spec="./gw_config.json", spec_io_mode="rw")


renderer = get_pyg_renderer()

renderer.explorer()

API Reference

pygwalker.walk

Parameter Type Default Description
dataset Union[DataFrame, Connector] - The dataframe or connector to be used.
gid Union[int, str] None ID for the GraphicWalker container div, formatted as 'gwalker-{gid}'.
env Literal['Jupyter', 'JupyterWidget'] 'JupyterWidget' Environment using pygwalker.
field_specs Optional[Dict[str, FieldSpec]] None Specifications of fields. Will be automatically inferred from dataset if not specified.
hide_data_source_config bool True If True, hides DataSource import and export button.
theme_key Literal['vega', 'g2'] 'g2' Theme type for the GraphicWalker.
appearance Literal['media', 'light', 'dark'] 'media' Theme setting. 'media' will auto-detect the OS theme.
spec str "" Chart configuration data. Can be a configuration ID, JSON, or remote file URL.
use_preview bool True If True, uses the preview function.
kernel_computation bool False If True, uses kernel computation for data.
**kwargs Any - Additional keyword arguments.

Development

Refer it: local-development

Tested Environments

  • Jupyter Notebook
  • Google Colab
  • Kaggle Code
  • Jupyter Lab
  • Jupyter Lite
  • Databricks Notebook (Since version 0.1.4a0)
  • Jupyter Extension for Visual Studio Code (Since version 0.1.4a0)
  • Most web applications compatiable with IPython kernels. (Since version 0.1.4a0)
  • Streamlit (Since version 0.1.4.9), enabled with pyg.walk(df, env='Streamlit')
  • DataCamp Workspace (Since version 0.1.4a0)
  • Hex Projects
  • ...feel free to raise an issue for more environments.

Configuration And Privacy Policy(pygwlaker >= 0.3.10)

You can use pygwalker config to set your privacy configuration.

$ pygwalker config --help

usage: pygwalker config [-h] [--set [key=value ...]] [--reset [key ...]] [--reset-all] [--list]

Modify configuration file. (default: ~/Library/Application Support/pygwalker/config.json) 
Available configurations:

- privacy  ['offline', 'update-only', 'events'] (default: events).
    "offline": fully offline, no data is send or api is requested
    "update-only": only check whether this is a new version of pygwalker to update
    "events": share which events about which feature is used in pygwalker, it only contains events data about which feature you arrive for product optimization. No DATA YOU ANALYSIS IS SEND. Events data will bind with a unique id, which is generated by pygwalker when it is installed based on timestamp. We will not collect any other information about you.
    
- kanaries_token  ['your kanaries token'] (default: empty string).
    your kanaries token, you can get it from https://kanaries.net.
    refer: https://space.kanaries.net/t/how-to-get-api-key-of-kanaries.
    by kanaries token, you can use kanaries service in pygwalker, such as share chart, share config.
    

options:
  -h, --help            show this help message and exit
  --set [key=value ...]
                        Set configuration. e.g. "pygwalker config --set privacy=update-only"
  --reset [key ...]     Reset user configuration and use default values instead. e.g. "pygwalker config --reset privacy"
  --reset-all           Reset all user configuration and use default values instead. e.g. "pygwalker config --reset-all"
  --list                List current used configuration.

More details, refer it: How to set your privacy configuration?

License

Apache License 2.0

Resources

PyGWalker Cloud is released! You can now save your charts to cloud, publish the interactive cell as a web app and use advanced GPT-powered features. Check out the PyGWalker Cloud for more details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygwalker-0.4.9.4a0.tar.gz (3.0 MB view details)

Uploaded Source

Built Distribution

pygwalker-0.4.9.4a0-py3-none-any.whl (2.9 MB view details)

Uploaded Python 3

File details

Details for the file pygwalker-0.4.9.4a0.tar.gz.

File metadata

  • Download URL: pygwalker-0.4.9.4a0.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pygwalker-0.4.9.4a0.tar.gz
Algorithm Hash digest
SHA256 9f6b33a18599c99123907a418f9279d430ae4801593efd9dc89f655c20c5c3c9
MD5 0b31da40779e259331ecbe1e0b8dd817
BLAKE2b-256 28421cc5ce55403ad8dd1533f63e340824639b7b00a863fb2a474da3a5b97b78

See more details on using hashes here.

File details

Details for the file pygwalker-0.4.9.4a0-py3-none-any.whl.

File metadata

File hashes

Hashes for pygwalker-0.4.9.4a0-py3-none-any.whl
Algorithm Hash digest
SHA256 318b18820186d8abb46cfd7a0bc9c81820da7a3a6a08d80037cd8043bf252b59
MD5 4047ea1ced4df40aff32e7d6946afa4d
BLAKE2b-256 535b46ecd989b51136fe12683d68d1dbcf8545141e7de77ed6cff2ea31092954

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page