Skip to main content

Python wrapper for HanLP: Han Language Processing

Reason this release was yanked:

Requires Python<=3.8

Project description

pyhanlp: Python interfaces for HanLP1.x

pypi Downloads GitHub license Run Jupyter Binder

HanLP1.x的Python接口,支持自动下载与升级HanLP1.x,兼容py2、py3。内部算法经过工业界和学术界考验,配套书籍《自然语言处理入门》已经出版,欢迎查阅随书代码或点击Binder在线运行。基于深度学习的HanLP2.x已于2020年初发布,次世代最先进的多语种NLP技术,与1.x相辅相成,平行发展。

安装

懒人请点击Run Jupyter非IT人士可直接使用傻瓜虚拟机工程师请先安装conda,然后执行:

conda install -c conda-forge openjdk python=3.8 jpype1=0.7.0 -y
pip install pyhanlp

使用命令hanlp来验证安装,如因网络等原因自动安装失败,可参考手动配置Windows指南

命令行

中文分词

使用命令hanlp segment进入交互分词模式,输入一个句子并回车,HanLP1.x会输出分词结果:

$ hanlp segment
商品和服务
商品/n /cc 服务/vn
当下雨天地面积水分外严重
/p 下雨天/n 地面/n 积水/n 分外/d 严重/a
龚学平等领导说,邓颖超生前杜绝超生
龚学平/nr /udeng 领导/n /v ,/w 邓颖超/nr 生前/t 杜绝/v 超生/vi

还可以重定向输入输出到文件等:

$ hanlp segment <<< '欢迎新老师生前来就餐'               
欢迎/v /a /a 师生/n 前来/vi 就餐/vi

依存句法分析

命令为hanlp parse,同样支持交互模式和重定向:

$ hanlp parse <<< '徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。'         
1	徐先生	徐先生	nh	nr	_	4	主谓关系	_	_
2			d	d	_	4	状中结构	_	_
3	具体	具体	a	a	_	4	状中结构	_	_
4	帮助	帮助	v	v	_	0	核心关系	_	_
5			r	rr	_	4	兼语	_	_
6	确定	确定	v	v	_	4	动宾关系	_	_
7			u	ule	_	6	右附加关系	_	_
8			p	pba	_	15	状中结构	_	_
9			v	v	_	8	介宾关系	_	_
10	雄鹰	雄鹰	n	n	_	9	动宾关系	_	_
11			wp	w	_	12	标点符号	_	_
12	松鼠	松鼠	n	n	_	10	并列关系	_	_
13			c	cc	_	14	左附加关系	_	_
14	麻雀	麻雀	n	n	_	10	并列关系	_	_
15	作为	作为	p	p	_	6	动宾关系	_	_
16	主攻	主攻	v	vn	_	17	定中关系	_	_
17	目标	目标	n	n	_	15	动宾关系	_	_
18			wp	w	_	4	标点符号	_	_

服务器

通过hanlp serve来启动内置的http服务器,默认本地访问地址为:http://localhost:8765 ;也可以访问官网演示页面:http://hanlp.hankcs.com/

升级

通过hanlp update命令来将HanLP1.x升级到最新版。该命令会获取HanLP主项目最新版本并自动下载安装。

欢迎通过hanlp --help查看最新帮助手册。

API

通过工具类HanLP调用常用接口:

from pyhanlp import *

print(HanLP.segment('你好,欢迎在Python中调用HanLP的API'))
for term in HanLP.segment('下雨天地面积水'):
    print('{}\t{}'.format(term.word, term.nature)) # 获取单词与词性
testCases = [
    "商品和服务",
    "结婚的和尚未结婚的确实在干扰分词啊",
    "买水果然后来世博园最后去世博会",
    "中国的首都是北京",
    "欢迎新老师生前来就餐",
    "工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作",
    "随着页游兴起到现在的页游繁盛,依赖于存档进行逻辑判断的设计减少了,但这块也不能完全忽略掉。"]
for sentence in testCases: print(HanLP.segment(sentence))
# 关键词提取
document = "水利部水资源司司长陈明忠9月29日在国务院新闻办举行的新闻发布会上透露," \
           "根据刚刚完成了水资源管理制度的考核,有部分省接近了红线的指标," \
           "有部分省超过红线的指标。对一些超过红线的地方,陈明忠表示,对一些取用水项目进行区域的限批," \
           "严格地进行水资源论证和取水许可的批准。"
print(HanLP.extractKeyword(document, 2))
# 自动摘要
print(HanLP.extractSummary(document, 3))
# 依存句法分析
print(HanLP.parseDependency("徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。"))

更多功能

更多功能,包括但不限于:

  • 自定义词典
  • 极速词典分词
  • 索引分词
  • CRF分词
  • 感知机词法分析
  • 臺灣正體、香港繁體
  • 关键词提取、自动摘要
  • 文本分类、情感分析

请阅读HanLP主项目文档demos目录以了解更多。调用更底层的API需要参考Java语法用JClass引入更深的类路径。以感知机词法分析器为例,这个类位于包名com.hankcs.hanlp.model.perceptron.PerceptronLexicalAnalyzer下,所以先用JClass得到类,然后就可以调用了:

PerceptronLexicalAnalyzer = JClass('com.hankcs.hanlp.model.perceptron.PerceptronLexicalAnalyzer')
analyzer = PerceptronLexicalAnalyzer()
print(analyzer.analyze("上海华安工业(集团)公司董事长谭旭光和秘书胡花蕊来到美国纽约现代艺术博物馆参观"))

输出:

[上海/ns 华安/nz 工业/n (/w 集团/n )/w 公司/n]/nt 董事长/n 谭旭光/nr 和/c 秘书/n 胡花蕊/nr 来到/v [美国/ns 纽约/ns 现代/t 艺术/n 博物馆/n]/ns 参观/v

如果你需要多线程安全性,可使用SafeJClass;如果你需要延迟加载,可使用LazyLoadingJClass。如果你经常使用某个类,欢迎将其写入pyhanlp/__init__.py中并提交pull request,谢谢!

与其他项目共享data

HanLP1.x具备高度可自定义的特点,所有模型和词典都可以自由替换。如果你希望与别的项目共享同一套data,只需将该项目的配置文件hanlp.properties拷贝到pyhanlp的安装目录下即可。本机安装目录可以通过hanlp --version获取。

同时,还可以通过--config临时加载另一个配置文件:

hanlp segment --config path/to/another/hanlp.properties

测试

git clone https://github.com/hankcs/pyhanlp.git
cd pyhanlp
pip install -e .
python tests/test_hanlp.py

反馈

任何bug,请前往HanLP issue区。提问请上论坛反馈,谢谢。

《自然语言处理入门》

自然语言处理是一门博大精深的学科,掌握理论才能发挥出工具的全部性能。新手可考虑这本入门书:

img

一本配套HanLP的NLP入门书,基础理论与生产代码并重,Python与Java双实现。从基本概念出发,逐步介绍中文分词、词性标注、命名实体识别、信息抽取、文本聚类、文本分类、句法分析这几个热门问题的算法原理与工程实现。书中通过对多种算法的讲解,比较了它们的优缺点和适用场景,同时详细演示生产级成熟代码,助你真正将自然语言处理应用在生产环境中。

《自然语言处理入门》由南方科技大学数学系创系主任夏志宏、微软亚洲研究院副院长周明、字节跳动人工智能实验室总监李航、华为诺亚方舟实验室语音语义首席科学家刘群、小米人工智能实验室主任兼NLP首席科学家王斌、中国科学院自动化研究所研究员宗成庆、清华大学副教授刘知远、北京理工大学副教授张华平和52nlp作序推荐。感谢各位前辈老师,希望这个项目和这本书能成为大家工程和学习上的“蝴蝶效应”,帮助大家在NLP之路上蜕变成蝶。

授权协议

Apache License 2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhanlp-0.1.78.tar.gz (136.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page