Skip to main content

No project description provided

Project description

pyharmonics

pyharmonics detects harmonic patterns in OHLC candle data for any stock or crypto asset. See http://www.harmonictrader.com for more information on harmonic patterns and follow author Scott Carney.

video tutorial https://www.youtube.com/watch?v=oLPU_f7AiGE

Installation

From git

$ git clone git@github.com:niall-oc/pyharmonics.git
$ cd pyharmonics
$ pip install .
$ cd src
$ python
>>> from pyharmonics.marketdata import BinanceCandleData
...

From pypi

$ pip install pyharmonics
$ python
>>> from pyharmonics.marketdata import BinanceCandleData

Complete Guide

https://pyharmonics.readthedocs.io/en/latest/

Quick Guide

Use the market data features or generate your own market data matching the dataframe schema below. close_time, dts can be omitted

>>> from pyharmonics.marketdata import BinanceCandleData
>>> b = BinanceCandleData()
>>> b.get_candles('BTCUSDT', b.MIN_15, 1000)
>>> b.df
>>> b.df
                               open      high       low     close     volume  close_time                       dts
index                                                                                                             
2023-07-09 07:44:59+01:00  30249.04  30267.04  30233.79  30262.33   79.71611  1688885099 2023-07-09 07:44:59+01:00
2023-07-09 07:59:59+01:00  30262.32  30267.87  30235.00  30254.79  136.31718  1688885999 2023-07-09 07:59:59+01:00
2023-07-09 08:14:59+01:00  30254.80  30283.50  30233.33  30283.50  185.04086  1688886899 2023-07-09 08:14:59+01:00
2023-07-09 08:29:59+01:00  30283.50  30283.50  30263.37  30263.37   74.17937  1688887799 2023-07-09 08:29:59+01:00
2023-07-09 08:44:59+01:00  30263.37  30270.09  30243.10  30257.30  121.15791  1688888699 2023-07-09 08:44:59+01:00
...                             ...       ...       ...       ...        ...         ...                       ...
2023-07-19 16:29:59+01:00  29841.37  29902.00  29841.36  29878.00  267.42077  1689780599 2023-07-19 16:29:59+01:00
2023-07-19 16:44:59+01:00  29878.00  29933.00  29866.15  29890.01  245.03318  1689781499 2023-07-19 16:44:59+01:00
2023-07-19 16:59:59+01:00  29890.01  29995.16  29890.00  29956.46  611.16786  1689782399 2023-07-19 16:59:59+01:00
2023-07-19 17:14:59+01:00  29956.46  29979.00  29901.70  29930.57  365.35485  1689783299 2023-07-19 17:14:59+01:00
2023-07-19 17:29:59+01:00  29930.57  29930.57  29870.00  29901.40  244.14513  1689784199 2023-07-19 17:29:59+01:00

[1000 rows x 7 columns]

Create a technicals object for further analysis.

>>> from pyharmonics.technicals import Technicals
>>> t = Technicals(b.df, b.symbol, b.interval)

Search for a harmonic pattern.

>>> from pyharmonics.search import HarmonicSearch
>>> m = HarmonicSearch(t)
>>> m.search()

Plot the findings.

>>> from pyharmonics.plotter import Plotter
>>> p = Plotter(t, 'BTCUSDT', b.MIN_15)
>>> p.add_harmonic_plots(m.get_patterns(family=m.XABCD))
>>> p.show()

You will see something like this. This is an image

See all harmonic patterns.

>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_harmonic_plots(m.get_patterns())
>>> p.show()

You will see something like this. This is an image

See all forming patterns.

>>> h = HarmonicSearch(t)
>>> h.forming()
>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_harmonic_plots(h.get_patterns(formed=False))
>>> p.show()

etc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyharmonics-1.4.tar.gz (47.0 kB view details)

Uploaded Source

Built Distribution

pyharmonics-1.4-py3-none-any.whl (46.0 kB view details)

Uploaded Python 3

File details

Details for the file pyharmonics-1.4.tar.gz.

File metadata

  • Download URL: pyharmonics-1.4.tar.gz
  • Upload date:
  • Size: 47.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pyharmonics-1.4.tar.gz
Algorithm Hash digest
SHA256 5cfbfc84de2cd5595258793a5b71175dc3c074163f9021e0cc5dc9b47ec402a8
MD5 c94f450f65e72a7fe5316ed67bd5d50b
BLAKE2b-256 fe08af37bb63e2a38dc8baf15e0b526e9ff314e3fab96b2dab6c094f4b53d573

See more details on using hashes here.

File details

Details for the file pyharmonics-1.4-py3-none-any.whl.

File metadata

  • Download URL: pyharmonics-1.4-py3-none-any.whl
  • Upload date:
  • Size: 46.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pyharmonics-1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2bca1bd33764f208371711ddfcefeeba3db7eb857ab47a48dd1a51de063952ec
MD5 80e3ac87e4e910bec590282338435e85
BLAKE2b-256 b3a3356b1ae5a66d5798df9f0cd5a0a342761957995befd0eff270082f8ea446

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page