Skip to main content

No project description provided

Project description

pyharmonics

pyharmonics detects harmonic patterns in OHLC candle data for any stock or crypto asset. See http://www.harmonictrader.com for more information.

Installation

From git

$ git clone git@github.com:niall-oc/pyharmonics.git
$ cd pyharmonics
$ pip install .
$ cd src
$ python
>>> from pyharmonics.marketdata import BinanceCandleData
...

From pypi

$ pip install pyharmonics
$ python
>>> from pyharmonics.marketdata import BinanceCandleData

Complete Guide

https://pyharmonics.readthedocs.io/en/latest/

Quick Guide

Use the market data features or generate your own market data matching the dataframe schema below. close_time, dts can be omitted

>>> from pyharmonics.marketdata import BinanceCandleData
>>> b = BinanceCandleData()
>>> b.get_candles('BTCUSDT', b.MIN_15, 1000)
>>> b.df
>>> b.df
                               open      high       low     close     volume  close_time                       dts
index                                                                                                             
2023-07-09 07:44:59+01:00  30249.04  30267.04  30233.79  30262.33   79.71611  1688885099 2023-07-09 07:44:59+01:00
2023-07-09 07:59:59+01:00  30262.32  30267.87  30235.00  30254.79  136.31718  1688885999 2023-07-09 07:59:59+01:00
2023-07-09 08:14:59+01:00  30254.80  30283.50  30233.33  30283.50  185.04086  1688886899 2023-07-09 08:14:59+01:00
2023-07-09 08:29:59+01:00  30283.50  30283.50  30263.37  30263.37   74.17937  1688887799 2023-07-09 08:29:59+01:00
2023-07-09 08:44:59+01:00  30263.37  30270.09  30243.10  30257.30  121.15791  1688888699 2023-07-09 08:44:59+01:00
...                             ...       ...       ...       ...        ...         ...                       ...
2023-07-19 16:29:59+01:00  29841.37  29902.00  29841.36  29878.00  267.42077  1689780599 2023-07-19 16:29:59+01:00
2023-07-19 16:44:59+01:00  29878.00  29933.00  29866.15  29890.01  245.03318  1689781499 2023-07-19 16:44:59+01:00
2023-07-19 16:59:59+01:00  29890.01  29995.16  29890.00  29956.46  611.16786  1689782399 2023-07-19 16:59:59+01:00
2023-07-19 17:14:59+01:00  29956.46  29979.00  29901.70  29930.57  365.35485  1689783299 2023-07-19 17:14:59+01:00
2023-07-19 17:29:59+01:00  29930.57  29930.57  29870.00  29901.40  244.14513  1689784199 2023-07-19 17:29:59+01:00

[1000 rows x 7 columns]

Create a technicals object for further analysis.

>>> from pyharmonics.technicals import Technicals
>>> t = Technicals(b.df)

Search for a harmonic pattern.

>>> from pyharmonics.search import MatrixSearch
>>> m = MatrixSearch(t)
>>> m.search()

Plot the findings.

>>> from pyharmonics.plotter import Plotter
>>> p = Plotter(t, 'BTCUSDT', b.MIN_15)
>>> p.add_matrix_plots(m.get_patterns(family=m.XABCD))
>>> p.show()

You will see something like this. This is an image

See all harmonic patterns.

>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_matrix_plots(m.get_patterns())
>>> p.show()

You will see something like this. This is an image

See all forming patterns.

>>> m = MatrixSearch(t)
>>> m.forming()
>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_matrix_plots(m.get_patterns(formed=False))
>>> p.show()

etc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyharmonics-1.0.tar.gz (37.9 kB view details)

Uploaded Source

Built Distribution

pyharmonics-1.0-py3-none-any.whl (35.2 kB view details)

Uploaded Python 3

File details

Details for the file pyharmonics-1.0.tar.gz.

File metadata

  • Download URL: pyharmonics-1.0.tar.gz
  • Upload date:
  • Size: 37.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyharmonics-1.0.tar.gz
Algorithm Hash digest
SHA256 3a50234da38d6f477f6fbb7dc2b3b6ed2ac70529a3b82513c553875d6414bad2
MD5 00c596fb98a51a6246649bc765d609a3
BLAKE2b-256 457558187810b8b0f9eae36d772094ee39df1075ffd89bdd192387bdef5ffe33

See more details on using hashes here.

Provenance

File details

Details for the file pyharmonics-1.0-py3-none-any.whl.

File metadata

  • Download URL: pyharmonics-1.0-py3-none-any.whl
  • Upload date:
  • Size: 35.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyharmonics-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 17d344417ee96dbbb58677b8ab5f0a534e38ae6e449ceec455b12e8a9a57ea51
MD5 45bd8297750d6323b0353b1de4b8238b
BLAKE2b-256 ad276c51529933ce0167e4a975ebb22214a4b617118dd8acaceeba4dd1eb3aec

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page