Skip to main content

No project description provided

Project description

pyharmonics

pyharmonics detects harmonic patterns in OHLC candle data for any stock or crypto asset. See http://www.harmonictrader.com for more information.

Installation

From git

$ git clone git@github.com:niall-oc/pyharmonics.git
$ cd pyharmonics
$ pip install .
$ cd src
$ python
>>> from pyharmonics.marketdata import BinanceCandleData
...

From pypi

$ pip install pyharmonics
$ python
>>> from pyharmonics.marketdata import BinanceCandleData

Complete Guide

https://pyharmonics.readthedocs.io/en/latest/

Quick Guide

Use the market data features or generate your own market data matching the dataframe schema below. close_time, dts can be omitted

>>> from pyharmonics.marketdata import BinanceCandleData
>>> b = BinanceCandleData()
>>> b.get_candles('BTCUSDT', b.MIN_15, 1000)
>>> b.df
>>> b.df
                               open      high       low     close     volume  close_time                       dts
index                                                                                                             
2023-07-09 07:44:59+01:00  30249.04  30267.04  30233.79  30262.33   79.71611  1688885099 2023-07-09 07:44:59+01:00
2023-07-09 07:59:59+01:00  30262.32  30267.87  30235.00  30254.79  136.31718  1688885999 2023-07-09 07:59:59+01:00
2023-07-09 08:14:59+01:00  30254.80  30283.50  30233.33  30283.50  185.04086  1688886899 2023-07-09 08:14:59+01:00
2023-07-09 08:29:59+01:00  30283.50  30283.50  30263.37  30263.37   74.17937  1688887799 2023-07-09 08:29:59+01:00
2023-07-09 08:44:59+01:00  30263.37  30270.09  30243.10  30257.30  121.15791  1688888699 2023-07-09 08:44:59+01:00
...                             ...       ...       ...       ...        ...         ...                       ...
2023-07-19 16:29:59+01:00  29841.37  29902.00  29841.36  29878.00  267.42077  1689780599 2023-07-19 16:29:59+01:00
2023-07-19 16:44:59+01:00  29878.00  29933.00  29866.15  29890.01  245.03318  1689781499 2023-07-19 16:44:59+01:00
2023-07-19 16:59:59+01:00  29890.01  29995.16  29890.00  29956.46  611.16786  1689782399 2023-07-19 16:59:59+01:00
2023-07-19 17:14:59+01:00  29956.46  29979.00  29901.70  29930.57  365.35485  1689783299 2023-07-19 17:14:59+01:00
2023-07-19 17:29:59+01:00  29930.57  29930.57  29870.00  29901.40  244.14513  1689784199 2023-07-19 17:29:59+01:00

[1000 rows x 7 columns]

Create a technicals object for further analysis.

>>> from pyharmonics.technicals import Technicals
>>> t = Technicals(b.df, b.symbol, b.interval)

Search for a harmonic pattern.

>>> from pyharmonics.search import MatrixSearch
>>> m = MatrixSearch(t)
>>> m.search()

Plot the findings.

>>> from pyharmonics.plotter import Plotter
>>> p = Plotter(t, 'BTCUSDT', b.MIN_15)
>>> p.add_matrix_plots(m.get_patterns(family=m.XABCD))
>>> p.show()

You will see something like this. This is an image

See all harmonic patterns.

>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_matrix_plots(m.get_patterns())
>>> p.show()

You will see something like this. This is an image

See all forming patterns.

>>> m = MatrixSearch(t)
>>> m.forming()
>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_matrix_plots(m.get_patterns(formed=False))
>>> p.show()

etc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyharmonics-1.3.2.tar.gz (41.7 kB view details)

Uploaded Source

Built Distribution

pyharmonics-1.3.2-py3-none-any.whl (39.1 kB view details)

Uploaded Python 3

File details

Details for the file pyharmonics-1.3.2.tar.gz.

File metadata

  • Download URL: pyharmonics-1.3.2.tar.gz
  • Upload date:
  • Size: 41.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pyharmonics-1.3.2.tar.gz
Algorithm Hash digest
SHA256 c77ee7c404888357f2044d63092c853c1a33c291ea91afc1b65f384dfd49a9c0
MD5 b3ad52b2d1f3b31587294a32e138ba34
BLAKE2b-256 1166b04b7517276947750ab6ccdf6de36b1a314420134f2c785506ab804d72b0

See more details on using hashes here.

Provenance

File details

Details for the file pyharmonics-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: pyharmonics-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 39.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pyharmonics-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fdd739cb7a119a8a8a4287667dc46d5ec84d392c0dd50652d9f802c88be47b6f
MD5 0258566e3ea41c030e2fee1a94e0a6ab
BLAKE2b-256 ee37f99a406d5c6b106a7891161c204bed08453ed25b606501196296d07ef021

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page