No project description provided
Project description
pyharmonics
pyharmonics detects harmonic patterns in OHLC candle data for any stock or crypto asset. See http://www.harmonictrader.com for more information on harmonic patterns and follow author Scott Carney.
Installation
From git
$ git clone git@github.com:niall-oc/pyharmonics.git
$ cd pyharmonics
$ pip install .
$ cd src
$ python
>>> from pyharmonics.marketdata import BinanceCandleData
...
From pypi
$ pip install pyharmonics
$ python
>>> from pyharmonics.marketdata import BinanceCandleData
Complete Guide
https://pyharmonics.readthedocs.io/en/latest/
Quick Guide
Use the market data features or generate your own market data matching the dataframe schema below. close_time, dts can be omitted
>>> from pyharmonics.marketdata import BinanceCandleData
>>> b = BinanceCandleData()
>>> b.get_candles('BTCUSDT', b.MIN_15, 1000)
>>> b.df
>>> b.df
open high low close volume close_time dts
index
2023-07-09 07:44:59+01:00 30249.04 30267.04 30233.79 30262.33 79.71611 1688885099 2023-07-09 07:44:59+01:00
2023-07-09 07:59:59+01:00 30262.32 30267.87 30235.00 30254.79 136.31718 1688885999 2023-07-09 07:59:59+01:00
2023-07-09 08:14:59+01:00 30254.80 30283.50 30233.33 30283.50 185.04086 1688886899 2023-07-09 08:14:59+01:00
2023-07-09 08:29:59+01:00 30283.50 30283.50 30263.37 30263.37 74.17937 1688887799 2023-07-09 08:29:59+01:00
2023-07-09 08:44:59+01:00 30263.37 30270.09 30243.10 30257.30 121.15791 1688888699 2023-07-09 08:44:59+01:00
... ... ... ... ... ... ... ...
2023-07-19 16:29:59+01:00 29841.37 29902.00 29841.36 29878.00 267.42077 1689780599 2023-07-19 16:29:59+01:00
2023-07-19 16:44:59+01:00 29878.00 29933.00 29866.15 29890.01 245.03318 1689781499 2023-07-19 16:44:59+01:00
2023-07-19 16:59:59+01:00 29890.01 29995.16 29890.00 29956.46 611.16786 1689782399 2023-07-19 16:59:59+01:00
2023-07-19 17:14:59+01:00 29956.46 29979.00 29901.70 29930.57 365.35485 1689783299 2023-07-19 17:14:59+01:00
2023-07-19 17:29:59+01:00 29930.57 29930.57 29870.00 29901.40 244.14513 1689784199 2023-07-19 17:29:59+01:00
[1000 rows x 7 columns]
Create a technicals object for further analysis.
>>> from pyharmonics.technicals import Technicals
>>> t = Technicals(b.df, b.symbol, b.interval)
Search for a harmonic pattern.
>>> from pyharmonics.search import MatrixSearch
>>> m = MatrixSearch(t)
>>> m.search()
Plot the findings.
>>> from pyharmonics.plotter import Plotter
>>> p = Plotter(t, 'BTCUSDT', b.MIN_15)
>>> p.add_matrix_plots(m.get_patterns(family=m.XABCD))
>>> p.show()
You will see something like this.
See all harmonic patterns.
>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_matrix_plots(m.get_patterns())
>>> p.show()
You will see something like this.
See all forming patterns.
>>> m = MatrixSearch(t)
>>> m.forming()
>>> p = Plotter(t, 'BTCUSDT', b.HOUR_1)
>>> p.add_matrix_plots(m.get_patterns(formed=False))
>>> p.show()
etc.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyharmonics-1.3.5.tar.gz
.
File metadata
- Download URL: pyharmonics-1.3.5.tar.gz
- Upload date:
- Size: 46.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c48066cf78e5094bc93aaacb3fe21966f77413d1c10e4543f244288c953137ca |
|
MD5 | c55d8786fbb0350bb2b0de2d7f8e280c |
|
BLAKE2b-256 | 1e160f13b465088ce178f4b9bd67af9610e4d439be17a1faaa84331bae4f0cb2 |
Provenance
File details
Details for the file pyharmonics-1.3.5-py3-none-any.whl
.
File metadata
- Download URL: pyharmonics-1.3.5-py3-none-any.whl
- Upload date:
- Size: 45.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b749c4a9efbc3e1fecbf628a1f817b2e2b481917ecb4d4e856f11e81912f5772 |
|
MD5 | 60e219406f5576e35f5e499d09001267 |
|
BLAKE2b-256 | 671a5cdb0d0a3cf031b3e31ca8a6ca0d1a31e6e429389e6339bab6c9abc0efd6 |