Skip to main content

A Python library to simplify Hasura, GraphQL and Machine Learning

Project description

PyHasura

A library for conveniently working with Hasura, GraphQL, File Formats, and some basic Machine Learning.

Getting Started

HasuraClient

# Create Hasura Client
import os
from dotenv import load_dotenv
from pyhasura import gql_client, HasuraClient, ExportFormat
from pprint import pprint

load_dotenv()  # Load environment variables from .env

hasura_client = HasuraClient(uri=os.environ.get("HASURA_URI"), admin_secret=os.environ.get("HASURA_ADMIN_SECRET"))

Query for a Result

result = hasura_client.execute("""
        query findCarts {
            carts {
                is_complete
                cart_items {
                    quantity
                    product {
                        price
                    }
                }
            }
            cart_items {
                id
            }
        }
    """)

pprint(result)

Convert Results to a Dictionary of Alternate Formats

result = hasura_client.convert_output_format(ExportFormat.ARROW)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.CSV)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.PARQUET)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.DATAFRAME)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.FLAT)
pprint(result)

Write Results, one file for each root entry in the query

result = hasura_client.write_to_file(output_format=ExportFormat.ARROW)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.CSV)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.PARQUET)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.FLAT)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.NATURAL)
pprint(result)

Detect Anomalies

Uses DictVectorizer. Assumes text is categorical, or enumerators. To Do - allow an alternate vectorizer - e.g. Word2Vec. To include more semantic meaning in anomaly detection.

result = hasura_client.anomalies()
pprint(result)
result = hasura_client.anomalies(threshold=.03)
pprint(result)

Train and Serialize then Re-Use for Anomaly Detection

Typically, do this to train on some historical dataset and then search for anomalies in an alternate (maybe current) dataset.

result = hasura_client.anomalies_training()
pprint(result)
result = hasura_client.anomalies(training_files=result, threshold=0)
pprint(result)

Clustering

Uses KMedoids clustering. You are always working on a dictionary of datasets. You need to define the number of clusters for each dataset in a corresponding input dictionary. You can auto-generate the optimal number of clusters and use that as the input.

result = hasura_client.optimal_number_of_clusters(1,8)
pprint(result)
result = hasura_client.clusters(result)
pprint(result)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhasura-1.0.20.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

pyhasura-1.0.20-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file pyhasura-1.0.20.tar.gz.

File metadata

  • Download URL: pyhasura-1.0.20.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for pyhasura-1.0.20.tar.gz
Algorithm Hash digest
SHA256 8444ac52dae91e09d2524acabafafdfe45aa9c260e7a66d9c29ff0221974e732
MD5 fde467aebd6d22bebdc7d55884818829
BLAKE2b-256 47d3e76d9b5bf4ef7a9d68103b80f04b1ec2c9f7c28e6afc15f4e7276afc7751

See more details on using hashes here.

File details

Details for the file pyhasura-1.0.20-py3-none-any.whl.

File metadata

  • Download URL: pyhasura-1.0.20-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for pyhasura-1.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 0f3af1cf59a1ce6163f17964aa94a14cbaf5ed72208bd5559d76f9f58dba96e2
MD5 f1d5cdbb1e2fe150599e30c3bbec2ac2
BLAKE2b-256 2a20da836789d2a719e1eb955d82fc145664331cef75440e6cef45445d233164

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page