A Python library to simplify Hasura, GraphQL and Machine Learning
Project description
PyHasura
A library for conveniently working with Hasura, GraphQL, File Formats, and some basic Machine Learning.
Getting Started
HasuraClient
# Create Hasura Client
import os
from dotenv import load_dotenv
from pyhasura import gql_client, HasuraClient, ExportFormat
from pprint import pprint
load_dotenv() # Load environment variables from .env
hasura_client = HasuraClient(uri=os.environ.get("HASURA_URI"), admin_secret=os.environ.get("HASURA_ADMIN_SECRET"))
Query for a Result
result = hasura_client.execute("""
query findCarts {
carts {
is_complete
cart_items {
quantity
product {
price
}
}
}
cart_items {
id
}
}
""")
pprint(result)
Convert Results to a Dictionary of Alternate Formats
result = hasura_client.convert_output_format(ExportFormat.ARROW)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.CSV)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.PARQUET)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.DATAFRAME)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.FLAT)
pprint(result)
Write Results, one file for each root entry in the query
result = hasura_client.write_to_file(output_format=ExportFormat.ARROW)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.CSV)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.PARQUET)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.FLAT)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.NATURAL)
pprint(result)
Detect Anomalies
Uses DictVectorizer. Assumes text is categorical, or enumerators. To Do - allow an alternate vectorizer - e.g. Word2Vec. To include more semantic meaning in anomaly detection.
result = hasura_client.anomalies()
pprint(result)
result = hasura_client.anomalies(threshold=.03)
pprint(result)
Train and Serialize then Re-Use for Anomaly Detection
Typically, do this to train on some historical dataset and then search for anomalies in an alternate (maybe current) dataset.
result = hasura_client.anomalies_training()
pprint(result)
result = hasura_client.anomalies(training_files=result, threshold=0)
pprint(result)
Clustering
Uses KMedoids clustering. You are always working on a dictionary of datasets. You need to define the number of clusters for each dataset in a corresponding input dictionary. You can auto-generate the optimal number of clusters and use that as the input.
result = hasura_client.optimal_number_of_clusters(1,8)
pprint(result)
result = hasura_client.clusters(result)
pprint(result)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyhasura-1.0.20.tar.gz
.
File metadata
- Download URL: pyhasura-1.0.20.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8444ac52dae91e09d2524acabafafdfe45aa9c260e7a66d9c29ff0221974e732 |
|
MD5 | fde467aebd6d22bebdc7d55884818829 |
|
BLAKE2b-256 | 47d3e76d9b5bf4ef7a9d68103b80f04b1ec2c9f7c28e6afc15f4e7276afc7751 |
File details
Details for the file pyhasura-1.0.20-py3-none-any.whl
.
File metadata
- Download URL: pyhasura-1.0.20-py3-none-any.whl
- Upload date:
- Size: 12.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f3af1cf59a1ce6163f17964aa94a14cbaf5ed72208bd5559d76f9f58dba96e2 |
|
MD5 | f1d5cdbb1e2fe150599e30c3bbec2ac2 |
|
BLAKE2b-256 | 2a20da836789d2a719e1eb955d82fc145664331cef75440e6cef45445d233164 |