Skip to main content

A Python library to simplify Hasura, GraphQL and Machine Learning

Project description

PyHasura

A library for conveniently working with Hasura, GraphQL, File Formats, and some basic Machine Learning.

Getting Started

HasuraClient

# Create Hasura Client
import os
from dotenv import load_dotenv
from pyhasura import gql_client, HasuraClient, ExportFormat
from pprint import pprint

load_dotenv()  # Load environment variables from .env

hasura_client = HasuraClient(uri=os.environ.get("HASURA_URI"), admin_secret=os.environ.get("HASURA_ADMIN_SECRET"))

Query for a Result

result = hasura_client.execute("""
        query findCarts {
            carts {
                is_complete
                cart_items {
                    quantity
                    product {
                        price
                    }
                }
            }
            cart_items {
                id
            }
        }
    """)

pprint(result)

Convert Results to a Dictionary of Alternate Formats

result = hasura_client.convert_output_format(ExportFormat.ARROW)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.CSV)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.PARQUET)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.DATAFRAME)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.FLAT)
pprint(result)

Write Results, one file for each root entry in the query

result = hasura_client.write_to_file(output_format=ExportFormat.ARROW)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.CSV)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.PARQUET)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.FLAT)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.NATURAL)
pprint(result)

Detect Anomalies

Uses Doc2Vec to facilitate deeper semantic analysis, but also works fine with categorical string fields.

result = hasura_client.anomalies()
pprint(result)
result = hasura_client.anomalies(threshold=.03)
pprint(result)

Train and Serialize then Re-Use for Anomaly Detection

Typically, do this to train on some historical dataset and then search for anomalies in an alternate (maybe current) dataset.

result = hasura_client.anomalies_training()
pprint(result)
result = hasura_client.anomalies(training_files=result, threshold=0)
pprint(result)

Clustering

Uses KMedoids clustering. You are always working on a dictionary of datasets. You need to define the number of clusters for each dataset in a corresponding input dictionary. You can auto-generate the optimal number of clusters and use that as the input.

result = hasura_client.optimal_number_of_clusters(1,8)
pprint(result)
result = hasura_client.clusters(result)
pprint(result)

Model First Design using DBML

Build models using DB Diagram then generate Hasura metadata.

metadata = hasura_client.add_dbml_model_as_source(
    'global-retail-sales.dbml',
    kind='postgres',
    configuration=configuration,
    output_file='new-metadata.json'
)

Auto-Generated/Discovery of Relationships

Wire up as many data sources as you want to analyze to a Hasura instance and automatically generate relationships (across data sources).

old_metadata = hasura_client.get_metadata()

# generate relationships
new_metadata = hasura_client.relationship_analysis('new-metadata.json', entity_synonyms={"Stores": ["warehouse"]})

# update hasura with new relationships
hasura_client.replace_metadata(metadata=new_metadata)

Upload a folder of CSVs to PostgreSQL

Create a datasource from a schema from PostgreSQL. Point a folder of CSVs to same PostgreSQL instance and schema. Then automatically track them in Hasura.

# upload data to database
tables = hasura_client.upload_csv_folder('retailer', uri=_uri, casing=Casing.camel)

# track all the tables we uploaded
result = hasura_client.track_pg_tables(tables, schema="public")

Convert SDL into nodes and relationships

Take a Hasura graphql endpoint and converts tje metadata it into nodes and edges for graph analysis (e.g. finding the optimal path between 2 types).

nodes, relationships = hasura_client.get_schema_relationships()
pp(nodes)
pp(relationships)

hasura_client.metadata_to_neo4j(
    os.environ.get("NEO4J_URI"),
    os.environ.get("NEO4J_USERNAME"),
    os.environ.get("NEO4J_PASSWORD"))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhasura-1.0.26.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

pyhasura-1.0.26-py3-none-any.whl (29.7 kB view details)

Uploaded Python 3

File details

Details for the file pyhasura-1.0.26.tar.gz.

File metadata

  • Download URL: pyhasura-1.0.26.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for pyhasura-1.0.26.tar.gz
Algorithm Hash digest
SHA256 6471abb0ea96fbb2b5139bf716f94cf12dce7915bddce08862ec7bda54b9916d
MD5 c7374e86879acebeead443b35e5022f4
BLAKE2b-256 28f829fcd2624d56b638364b9cafea061826c76082de2880fd3a51faf861c72e

See more details on using hashes here.

File details

Details for the file pyhasura-1.0.26-py3-none-any.whl.

File metadata

  • Download URL: pyhasura-1.0.26-py3-none-any.whl
  • Upload date:
  • Size: 29.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for pyhasura-1.0.26-py3-none-any.whl
Algorithm Hash digest
SHA256 7b725048799c7744ca5e5c27602e855ed3a24aabb8b77cd0eab9cfad7f304825
MD5 95c8c0275171546604600bfd36ecad89
BLAKE2b-256 6be8f6e3107f68b6c397eb8c3271e3ac6cfeb0fd380af868aa4a777ef5d4c62d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page