Skip to main content

A Python library to simplify Hasura, GraphQL and Machine Learning

Project description

PyHasura

A library for conveniently working with Hasura, GraphQL, File Formats, and some basic Machine Learning.

Getting Started

HasuraClient

# Create Hasura Client
import os
from dotenv import load_dotenv
from pyhasura import gql_client, HasuraClient, ExportFormat
from pprint import pprint

load_dotenv()  # Load environment variables from .env

hasura_client = HasuraClient(uri=os.environ.get("HASURA_URI"), admin_secret=os.environ.get("HASURA_ADMIN_SECRET"))

Query for a Result

result = hasura_client.execute("""
        query findCarts {
            carts {
                is_complete
                cart_items {
                    quantity
                    product {
                        price
                    }
                }
            }
            cart_items {
                id
            }
        }
    """)

pprint(result)

Convert Results to a Dictionary of Alternate Formats

result = hasura_client.convert_output_format(ExportFormat.ARROW)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.CSV)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.PARQUET)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.DATAFRAME)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.FLAT)
pprint(result)

Write Results, one file for each root entry in the query

result = hasura_client.write_to_file(output_format=ExportFormat.ARROW)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.CSV)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.PARQUET)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.FLAT)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.NATURAL)
pprint(result)

Detect Anomalies

Uses Doc2Vec to facilitate deeper semantic analysis, but also works fine with categorical string fields.

result = hasura_client.anomalies()
pprint(result)
result = hasura_client.anomalies(threshold=.03)
pprint(result)

Train and Serialize then Re-Use for Anomaly Detection

Typically, do this to train on some historical dataset and then search for anomalies in an alternate (maybe current) dataset.

result = hasura_client.anomalies_training()
pprint(result)
result = hasura_client.anomalies(training_files=result, threshold=0)
pprint(result)

Clustering

Uses KMedoids clustering. You are always working on a dictionary of datasets. You need to define the number of clusters for each dataset in a corresponding input dictionary. You can auto-generate the optimal number of clusters and use that as the input.

result = hasura_client.optimal_number_of_clusters(1,8)
pprint(result)
result = hasura_client.clusters(result)
pprint(result)

Model First Design using DBML

Build models using DB Diagram then generate Hasura metadata.

Click here for an example

metadata = hasura_client.add_dbml_model_as_source(
    'global-retail-sales.dbml',
    kind='postgres',
    configuration=configuration,
    output_file='new-metadata.json'
)

Auto-Generated/Discovery of Relationships

Wire up as many data sources as you want to analyze to a Hasura instance and automatically generate relationships (across data sources).

old_metadata = hasura_client.get_metadata()

# generate relationships
new_metadata = hasura_client.relationship_analysis('new-metadata.json', entity_synonyms={"Stores": ["warehouse"]})

# update hasura with new relationships
hasura_client.replace_metadata(metadata=new_metadata)

Upload a folder of CSVs to PostgreSQL

Create a datasource from a schema from PostgreSQL. Point a folder of CSVs to same PostgreSQL instance and schema. Then automatically track them in Hasura.

# upload data to database
tables = hasura_client.upload_csv_folder('retailer', uri=_uri, casing=Casing.camel)

# track all the tables we uploaded
result = hasura_client.track_pg_tables(tables, schema="public")

Convert SDL into nodes and relationships

Take a Hasura graphql endpoint and converts the metadata it into nodes and edges for graph analysis (e.g. finding the optimal path between 2 types).

nodes, relationships = hasura_client.get_schema_relationships()
pp(nodes)
pp(relationships)

hasura_client.metadata_to_neo4j(
    os.environ.get("NEO4J_URI"),
    os.environ.get("NEO4J_USERNAME"),
    os.environ.get("NEO4J_PASSWORD"))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhasura-1.0.33.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

pyhasura-1.0.33-py3-none-any.whl (30.0 kB view details)

Uploaded Python 3

File details

Details for the file pyhasura-1.0.33.tar.gz.

File metadata

  • Download URL: pyhasura-1.0.33.tar.gz
  • Upload date:
  • Size: 26.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for pyhasura-1.0.33.tar.gz
Algorithm Hash digest
SHA256 7f4056608325252700ba66263bc1ff8180f3b0680609d44a7f8f91b1c2928e26
MD5 7fa36952ac759d99c42c3cdbdf9c00df
BLAKE2b-256 fcbed06c564b0c7de7c57898a07c7421f7cc5cfb1247110a66dd3aa387342d3b

See more details on using hashes here.

File details

Details for the file pyhasura-1.0.33-py3-none-any.whl.

File metadata

  • Download URL: pyhasura-1.0.33-py3-none-any.whl
  • Upload date:
  • Size: 30.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for pyhasura-1.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 010fd318c984981d990f461da3b288434dffb9ac2efe1abe5c908716a9345c40
MD5 af159ea08b178ba19bc2faaafaa3e6ec
BLAKE2b-256 0939aa756d1a1adc263c30d4a554982fdc52ff7b81a88c485f8f23ebfe2ea401

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page