Skip to main content

Enable handle of csv, xls and xlsx files getting column header

Project description

The PyHeaderFile helps the work with files that have extensions csv, xls and xlsx.

This project aims reading files over the header (column names). With this module we can handle Csv, Xls and Xlsx files using same interface. Thus, we can convert extensions, strip values in lines, change cell style of Excel files, read a specific Excel file, read an specific cell and read just some headers.

Install

pip install pyheaderfile

How to use

First of all you need to import module:

from pyheaderfile import Csv, Xls, Xlsx, guess_type

Each of them will be explained below.

Class csv

Read csv

Default encode is utf8, but you can change it. Default strip is false, but classes can strip each value automatically:

file = Csv(name=’file.csv’, encode='latin1', strip=True)
for row in file.read():
    print row

Set Header

file.header = ['col1', 'col2','col3']

Create csv

file = Csv(name='filename.csv', header=['col1','col2','col3'])

Write list csv

file.write(['col1','col2','col3'])

Write dict csv

file.write(dict(header=value))

Save file

file.save()

Class Xls

Read xls

You can strip automatically values from xls files too, but default value is False:

file = Xls(name=’file.xls’, strip=True)
for row in file.read():
    print row

Set Header

file.header = ['col1', 'col2','col3']

Create xls

file = Xls(name='filename.xls', header=['col1','col2','col3'])

Write list

file.write(['col1','col2','col3'])

Write dict

file.write(dict(header=value))

Save file

Finally you can save the file

file.save()

Class Xlsx

Read

You can strip values from xlsx files too:

file = Xlsx(name=’file.xlsx’, strip=True)
for row in file.read():
    print row

Set Header

file.header = ['col1', 'col2','col3']

Create file

file = Xlsx(name='filename.xlsx', header=['col1','col2','col3'])

Write list

file.write(['col_val1','col_val2','col_val3'])

Write dict

file.write(dict(header=value))

Save file

You can save the file to another path too

file.save('/path/to/new/file/')

Alternativelly to save you can use close() that just use same path mandatorily.

file.close()

Working with memory

Writing

Objects can be stored in memory and then saved into disk or simple stay in memory:

from StringIO import StringIO
mem_obj = StringIO()
xls = Xls(mem_obj, header=['first', 'second'])
xls.write('1 guy', '2 guys')
xls.save()  # or you can xls.save('/path/to/file/')

When you save file you retrieve StringIO contents or save its to disk specifying a directory. The content will be saved with name ‘default.xls’ in this case.

Reading

Same as writing you can read objects from memory. So, after you save your content you can read it again:

from StringIO import StringIO
mem_obj = StringIO()
xls = Xls(mem_obj, header=['first', 'second'])
xls.write('1 guy', '2 guys')
xls.save()
# here use new object
new_xls = Xls(mem_obj)
for row in new_xls:
    print row # should echo {'first': '1 guy', 'second': '2 guys'} then next rows

Tricks

Modifying extensions, name and header

You can change filename and header using this:

q = Xls()
x = Xlsx(name='filename.xlsx')
x.name = 'ugly file name'
x.header = ['col1', 'col2','col3']
q(x)

BE CAREFUL! You can’t change name using StringIO or others memory storage. You will get an error.

Guess file type

To guess what class you need to open just use:

filename = 'test.xls'
my_file = guess_type(filename)

If you are working with Csv or Xls, you can pass all possible kwargs and guess_type guess right kwargs:

my_file = guess_type(filename, encode='latin1', strip=True)

Only if filename is a Csv file, then guess_type send encode kwarg to instance.

And for a SUPERCOMBO you can guess and convert everything!

my_file = guess_type(filename, **kwargs)
convert_to = Xls()
my_file.name = 'beautiful_name'
my_file.header = ['col1', 'col2','col3']
convert_to(my_file) # now your file is a xls file ;)
convert_to.save('/my/other/path/')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyheaderfile-0.4.0.tar.gz (10.0 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page