Skip to main content

A toolkit of helper functions to facilitate data manipulation.

Reason this release was yanked:

This version is obsolete.

Project description

pyhelpers

Author: Qian Fu Twitter URL

PyPI PyPI - Python Version GitHub GitHub code size in bytes PyPI - Downloads

A toolkit of helper functions to facilitate data manipulation.

Installation

pip install --upgrade pyhelpers

Note:

  • Only a few frequently-used dependencies are required for installation.
  • When importing the module/functions whose dependencies are not available with the installation of this package (or if you happen not to have those dependencies installed yet), an "ModuleNotFoundError" will be prompted and you may install them separately.

Quick start - some examples

The current version includes the following modules:

There are a number of functions included in each of the above-listed modules. For a quick start, one example is provided for each module to demonstrate how 'pyhelpers' may assist you in your work.

settings

This module can be used to change some common settings with 'pandas', 'numpy', 'matplotlib' and 'gdal'. For example:

from pyhelpers.settings import pd_preferences

pd_preferences changes a few default 'pandas' settings (when reset=False), such as the display representation and maximum number of columns when viewing a pandas.DataFrame.

pd_preferences(reset=False)

If reset=True, all changed parameters should be reset to their default values.

Note that the preset parameters are for the authors' own preference; however you can always change them in the source code to whatever suits your use.

dir

from pyhelpers.dir import cd, regulate_input_data_dir

cd() returns the current working directory

print(cd())

If you would like to save dat to a customised folder, say "data". cd() can also change directory

path_to_folder = cd("tests", mkdir=False)
print(path_to_folder)

If path_to_folder does not exist, setting mkdir=True (default: False) will create just it.

More examples:

path_to_pickle = cd("tests", "dat.pickle")
print(path_to_pickle)

path_to_test_pickle = cd("tests", "data", "dat.pickle")  # cd("tests\\data\\dat.pickle")
print(path_to_test_pickle)

You should see the difference between path_to_pickle and path_to_test_pickle.

Check also:

print(regulate_input_data_dir("tests"))
print(regulate_input_data_dir(path_to_test_pickle))

download

from pyhelpers.download import download

Note that this module requires requests and tqdm.

Suppose you would like to download a Python logo from online where URL is as follows:

url = 'https://www.python.org/static/community_logos/python-logo-master-v3-TM.png'

Firstly, specify where the .png file will be saved and what the filename will be. For example, to name the downloaded file as "python-logo.png" and save it to a folder named "picture":

path_to_python_logo = cd("tests", "picture", "python-logo.png")

Then use download()

download(url, path_to_python_logo)

If you happen to have Pillow installed, you may also view the downloaded picture:

from PIL import Image

python_logo = Image.open(path_to_python_logo)
python_logo.show()

To remove the download directory:

from pyhelpers.dir import rm_dir

rm_dir(cd("tests", "picture"), confirmation_required=True)  # Remove "picture" folder
# rm_dir(cd("tests"), confirmation_required=True)

store

Let's now create a pandas.DataFrame (using the above xy_array) as follows:

import numpy as np
import pandas as pd

xy_array = np.array([(530034, 180381),   # London
                     (406689, 286822),   # Birmingham
                     (383819, 398052),   # Manchester
                     (582044, 152953)])  # Leeds

dat = pd.DataFrame(xy_array, columns=['Easting', 'Northing'])

If you would like to save dat as a "pickle" file and retrieve it later, you may import save_pickle and load_pickle:

from pyhelpers.store import save_pickle, load_pickle

To save dat to path_to_test_pickle (see dir):

save_pickle(dat, path_to_test_pickle, verbose=True)  # default: verbose=False

To retrieve/load dat from path_to_test_pickle:

dat_retrieved = load_pickle(path_to_test_pickle, verbose=True)

dat_retrieved and dat should be identical:

print(dat_retrieved.equals(dat))  # should return True

In addition to .pickle, store.py also works with other formats, such as .feather, .csv and .xlsx/.xls.

geom

If you need to convert coordinates from British national grid (OSGB36) to latitude and longitude (WGS84), you import osgb36_to_wgs84 from geom.py

from pyhelpers.geom import osgb36_to_wgs84

To convert a single coordinate, xy:

xy = np.array((530034, 180381))  # London

easting, northing = xy
lonlat = osgb36_to_wgs84(easting, northing)  # osgb36_to_wgs84(xy[0], xy[1])
print(lonlat)  # (-0.12772400574286874, 51.50740692743041)

To convert an array of OSGB36 coordinates, xy_array:

eastings, northings = xy_array.T
lonlat_array = np.array(osgb36_to_wgs84(eastings, northings))
print(lonlat_array.T)

Similarly, if you would like to convert coordinates from latitude and longitude (WGS84) to OSGB36, import wgs84_to_osgb36 instead.

text

Suppose you have a str type variable, named string :

string = 'ang'

If you would like to find the most similar text to one of the following lookup_list:

lookup_list = ['Anglia',
               'East Coast',
               'East Midlands',
               'North and East',
               'London North Western',
               'Scotland',
               'South East',
               'Wales',
               'Wessex',
               'Western']

Let's try find_similar_str included in text.py:

from pyhelpers.text import find_similar_str

Setting processor='fuzzywuzzy' requires 'fuzzywuzzy' (recommended) - token_set_ratio

result_1 = find_similar_str(string, lookup_list, processor='fuzzywuzzy')
print(result_1)

Setting processor='nltk' requires 'nltk' - edit_distance

result_2 = find_similar_str(string, lookup_list, processor='nltk', substitution_cost=100)
print(result_2)

You may also give find_matched_str() a try:

from pyhelpers.text import find_matched_str

result_3 = find_matched_str(string, lookup_list)
print(result_3)

ops

If you would like to request a confirmation before proceeding with some processes, you may use confirmed included in ops.py:

from pyhelpers.ops import confirmed

You may specify, by setting prompt, what you would like to be asked as to the confirmation:

confirmed(prompt="Continue?...", confirmation_required=True)
Continue?... [No]|Yes:
>? # Input something here, e.g. Yes, Y, or y

If you input Yes (or Y, yes, or something like ye), it should return True; otherwise, False given the input being No (or something like n). When confirmation_required is False, this function would be null, as it would always return True.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhelpers-1.0.20.tar.gz (23.0 kB view hashes)

Uploaded Source

Built Distribution

pyhelpers-1.0.20-py3-none-any.whl (28.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page