Skip to main content

(partial) pure python histfactory implementation

Project description

pyhf logo

pure-python fitting/limit-setting/interval estimation HistFactory-style

GitHub Project DOI

GitHub Actions Status: CI GitHub Actions Status: Publish Docker Automated Code Coverage Language grade: Python CodeFactor Code style: black

Docs Binder

PyPI version Supported Python versionss Docker Stars Docker Pulls

The HistFactory p.d.f. template [CERN-OPEN-2012-016] is per-se independent of its implementation in ROOT and sometimes, it's useful to be able to run statistical analysis outside of ROOT, RooFit, RooStats framework.

This repo is a pure-python implementation of that statistical model for multi-bin histogram-based analysis and its interval estimation is based on the asymptotic formulas of "Asymptotic formulae for likelihood-based tests of new physics" [arXiv:1007.1727]. The aim is also to support modern computational graph libraries such as PyTorch and TensorFlow in order to make use of features such as autodifferentiation and GPU acceleration.

Hello World

>>> import pyhf
>>> pdf = pyhf.simplemodels.hepdata_like(signal_data=[12.0, 11.0], bkg_data=[50.0, 52.0], bkg_uncerts=[3.0, 7.0])
>>> CLs_obs, CLs_exp = pyhf.infer.hypotest(1.0, [51, 48] + pdf.config.auxdata, pdf, return_expected=True)
>>> print('Observed: {}, Expected: {}'.format(CLs_obs, CLs_exp))
Observed: [0.05290116], Expected: [0.06445521]

What does it support

Implemented variations:

  • HistoSys
  • OverallSys
  • ShapeSys
  • NormFactor
  • Multiple Channels
  • Import from XML + ROOT via uproot
  • ShapeFactor
  • StatError
  • Lumi Uncertainty

Computational Backends:

  • NumPy
  • PyTorch
  • TensorFlow
  • JAX

Available Optimizers

NumPy Tensorflow PyTorch
SLSQP (scipy.optimize) Newton's Method (autodiff) Newton's Method (autodiff)
MINUIT (iminuit) . .


  • StatConfig
  • Non-asymptotic calculators

results obtained from this package are validated against output computed from HistFactory workspaces

A one bin example

nobs = 55, b = 50, db = 7, nom_sig = 10.
manual manual

A two bin example

bin 1: nobs = 100, b = 100, db = 15., nom_sig = 30.
bin 2: nobs = 145, b = 150, db = 20., nom_sig = 45.
manual manual


To install pyhf from PyPI with the NumPy backend run

pip install pyhf

and to install pyhf with additional backends run

pip install pyhf[tensorflow,torch]

or a subset of the options.

To uninstall run

pip uninstall pyhf


Please check the contribution statistics for a list of contributors

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhf-0.3.4.tar.gz (6.9 MB view hashes)

Uploaded Source

Built Distribution

pyhf-0.3.4-py2.py3-none-any.whl (95.3 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page