Skip to main content

Python interface to Hive

Project description

https://travis-ci.org/dropbox/PyHive.svg?branch=master https://img.shields.io/codecov/c/github/dropbox/PyHive.svg

PyHive

PyHive is a collection of Python DB-API and SQLAlchemy interfaces for Presto and Hive.

Usage

DB-API

from pyhive import presto  # or import hive
cursor = presto.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10')
print cursor.fetchone()
print cursor.fetchall()

DB-API (asynchronous)

from pyhive import hive
from TCLIService.ttypes import TOperationState
cursor = hive.connect('localhost').cursor()
cursor.execute('SELECT * FROM my_awesome_data LIMIT 10', async=True)

status = cursor.poll().operationState
while status in (TOperationState.INITIALIZED_STATE, TOperationState.RUNNING_STATE):
    logs = cursor.fetch_logs()
    for message in logs:
        print message

    # If needed, an asynchronous query can be cancelled at any time with:
    # cursor.cancel()

    status = cursor.poll().operationState

print cursor.fetchall()

SQLAlchemy

First install this package to register it with SQLAlchemy (see setup.py).

from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
# Presto
engine = create_engine('presto://localhost:8080/hive/default')
# Hive
engine = create_engine('hive://localhost:10000/default')
logs = Table('my_awesome_data', MetaData(bind=engine), autoload=True)
print select([func.count('*')], from_obj=logs).scalar()

Note: query generation functionality is not exhaustive or fully tested, but there should be no problem with raw SQL.

Passing session configuration

# DB-API
hive.connect('localhost', configuration={'hive.exec.reducers.max': '123'})
presto.connect('localhost', session_props={'query_max_run_time': '1234m'})
# SQLAlchemy
create_engine(
    'presto://user@host:443/hive',
    connect_args={'protocol': 'https',
                  'session_props': {'query_max_run_time': '1234m'}}
)
create_engine(
    'hive://user@host:10000/database',
    connect_args={'configuration': {'hive.exec.reducers.max': '123'}},
)
# SQLAlchemy with LDAP
create_engine(
    'hive://user:password@host:10000/database',
    connect_args={'auth': 'LDAP'},
)

Requirements

Install using

  • pip install pyhive[hive] for the Hive interface and

  • pip install pyhive[presto] for the Presto interface.

PyHive works with

  • Python 2.7 / Python 3

  • For Presto: Presto install

  • For Hive: HiveServer2 daemon

Changelog

See https://github.com/dropbox/PyHive/releases.

Contributing

  • Please fill out the Dropbox Contributor License Agreement at https://opensource.dropbox.com/cla/ and note this in your pull request.

  • Changes must come with tests, with the exception of trivial things like fixing comments. See .travis.yml for the test environment setup.

  • Notes on project scope:

    • This project is intended to be a minimal Hive/Presto client that does that one thing and nothing else. Features that can be implemented on top of PyHive, such integration with your favorite data analysis library, are likely out of scope.

    • We prefer having a small number of generic features over a large number of specialized, inflexible features. For example, the Presto code takes an arbitrary requests_session argument for customizing HTTP calls, as opposed to having a separate parameter/branch for each requests option.

Testing

https://travis-ci.org/dropbox/PyHive.svg http://codecov.io/github/dropbox/PyHive/coverage.svg?branch=master

Run the following in an environment with Hive/Presto:

./scripts/make_test_tables.sh
virtualenv --no-site-packages env
source env/bin/activate
pip install -e .
pip install -r dev_requirements.txt
py.test

WARNING: This drops/creates tables named one_row, one_row_complex, and many_rows, plus a database called pyhive_test_database.

Updating TCLIService

The TCLIService module is autogenerated using a TCLIService.thrift file. To update it, the generate.py file can be used: python generate.py <TCLIServiceURL>. When left blank, the version for Hive 2.3 will be downloaded.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyHiveHere-0.6.1.tar.gz (41.5 kB view details)

Uploaded Source

Built Distribution

PyHiveHere-0.6.1-py2-none-any.whl (68.9 kB view details)

Uploaded Python 2

File details

Details for the file PyHiveHere-0.6.1.tar.gz.

File metadata

  • Download URL: PyHiveHere-0.6.1.tar.gz
  • Upload date:
  • Size: 41.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/18.5 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.10

File hashes

Hashes for PyHiveHere-0.6.1.tar.gz
Algorithm Hash digest
SHA256 dfad813352c0c7442c1dda9917751847ce05cea174a25daf03b4ab4e500d3f88
MD5 6eb5f386a1523002b1893c6f5eb3f82d
BLAKE2b-256 542a7bd181b05c52acaf62b2ec58f007c84d9db03324ab451a7febae0151a39c

See more details on using hashes here.

File details

Details for the file PyHiveHere-0.6.1-py2-none-any.whl.

File metadata

  • Download URL: PyHiveHere-0.6.1-py2-none-any.whl
  • Upload date:
  • Size: 68.9 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/18.5 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.10

File hashes

Hashes for PyHiveHere-0.6.1-py2-none-any.whl
Algorithm Hash digest
SHA256 a8dc123d3e2b5569de870b2acf2206af1de6bc3f99a8a9a65fbc12e62f87a7ff
MD5 5294a676252651bfe1f846a674a4c23e
BLAKE2b-256 68f0cf5c3f81e793ef83f2ac797964320503942153e7a2e04ba59a814e7e4f8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page