Skip to main content

Cython bindings and Python interface to HMMER3.

Project description

🐍🟡♦️🟦 PyHMMER Stars

Cython bindings and Python interface to HMMER3.

Actions Coverage PyPI Bioconda AUR Wheel Python Versions Python Implementations License Source Mirror GitHub issues Docs Changelog Downloads Paper Citations

🗺️ Overview

HMMER is a biological sequence analysis tool that uses profile hidden Markov models to search for sequence homologs. HMMER3 is developed and maintained by the Eddy/Rivas Laboratory at Harvard University.

pyhmmer is a Python package, implemented using the Cython language, that provides bindings to HMMER3. It directly interacts with the HMMER internals, which has the following advantages over CLI wrappers (like hmmer-py):

  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyhmmer as a dependency to your project, and stop worrying about the HMMER binaries being properly setup on the end-user machine.
  • no intermediate files: Everything happens in memory, in Python objects you have control on, making it easier to pass your inputs to HMMER without needing to write them to a temporary file. Output retrieval is also done in memory, via instances of the pyhmmer.plan7.TopHits class.
  • no input formatting: The Easel object model is exposed in the pyhmmer.easel module, and you have the possibility to build a DigitalSequence object yourself to pass to the HMMER pipeline. This is useful if your sequences are already loaded in memory, for instance because you obtained them from another Python library (such as Pyrodigal or Biopython).
  • no output parsing: HMMER3 is notorious for its numerous output files and its fixed-width tabular output, which is hard to parse (even Bio.SearchIO.HmmerIO is struggling on some sequences).
  • efficient: Using pyhmmer to launch hmmsearch on sequences and HMMs in disk storage is typically as fast as directly using the hmmsearch binary (see the Benchmarks section). pyhmmer.hmmer.hmmsearch uses a different parallelisation strategy compared to the hmmsearch binary from HMMER, which can help getting the most of multiple CPUs when annotating smaller sequence databases.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to run biological analyses or workflows involving hmmsearch, hmmscan, nhmmer, phmmer, hmmbuild and hmmalign.

🔧 Installing

pyhmmer can be installed from PyPI, which hosts some pre-built CPython wheels for Linux and MacOS on x86-64 and Arm64, as well as the code required to compile from source with Cython:

$ pip install pyhmmer

Compilation for UNIX PowerPC is not tested in CI, but should work out of the box. Note than non-UNIX operating systems (such as Windows) are not supported by HMMER.

A Bioconda package is also available:

$ conda install -c bioconda pyhmmer

🔖 Citation

PyHMMER is scientific software, with a published paper in the Bioinformatics. Please cite both PyHMMER and HMMER if you are using it in an academic work, for instance as:

PyHMMER (Larralde et al., 2023), a Python library binding to HMMER (Eddy, 2011).

Detailed references are available on the Publications page of the online documentation.

📖 Documentation

A complete API reference can be found in the online documentation, or directly from the command line using pydoc:

$ pydoc pyhmmer.easel
$ pydoc pyhmmer.plan7

💡 Example

Use pyhmmer to run hmmsearch to search for Type 2 PKS domains (t2pks.hmm) inside proteins extracted from the genome of Anaerococcus provencensis (938293.PRJEB85.HG003687.faa). This will produce an iterable over TopHits that can be used for further sorting/querying in Python. Processing happens in parallel using Python threads, and a TopHits object is yielded for every HMM passed in the input iterable.

import pyhmmer

with pyhmmer.easel.SequenceFile("pyhmmer/tests/data/seqs/938293.PRJEB85.HG003687.faa", digital=True) as seq_file:
    sequences = list(seq_file)

with pyhmmer.plan7.HMMFile("pyhmmer/tests/data/hmms/txt/t2pks.hmm") as hmm_file:
    for hits in pyhmmer.hmmsearch(hmm_file, sequences, cpus=4):
      print(f"HMM {hits.query_name.decode()} found {len(hits)} hits in the target sequences")

Have a look at more in-depth examples such as building a HMM from an alignment, analysing the active site of a hit, or fetching marker genes from a genome in the Examples page of the online documentation.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⏱️ Benchmarks

Benchmarks were run on a i7-10710U CPU running @1.10GHz with 6 physical / 12 logical cores, using a FASTA file containing 4,489 protein sequences extracted from the genome of Escherichia coli (562.PRJEB4685) and the version 33.1 of the Pfam HMM library containing 18,259 domains. Commands were run 3 times on a warm SSD. Plain lines show the times for pressed HMMs, and dashed-lines the times for HMMs in text format.

Benchmarks

Raw numbers can be found in the benches folder. They suggest that phmmer should be run with the number of logical cores, while hmmsearch should be run with the number of physical cores (or less). A possible explanation for this observation would be that HMMER platform-specific code requires too many SIMD registers per thread to benefit from simultaneous multi-threading.

To read more about how PyHMMER achieves better parallelism than HMMER for many-to-many searches, have a look at the Performance page of the documentation.

🔍 See Also

Building a HMM from scratch? Then you may be interested in the pyfamsa package, providing bindings to FAMSA, a very fast multiple sequence aligner. In addition, you may want to trim alignments: in that case, consider pytrimal, which wraps trimAl 2.0.

If despite of all the advantages listed earlier, you would rather use HMMER through its CLI, this package will not be of great help. You can instead check the hmmer-py package developed by Danilo Horta at the EMBL-EBI.

⚖️ License

This library is provided under the MIT License. The HMMER3 and Easel code is available under the BSD 3-clause license. See vendor/hmmer/LICENSE and vendor/easel/LICENSE for more information.

This project is in no way affiliated, sponsored, or otherwise endorsed by the original HMMER authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhmmer-0.10.15.tar.gz (5.1 MB view details)

Uploaded Source

Built Distributions

pyhmmer-0.10.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp312-cp312-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyhmmer-0.10.15-cp312-cp312-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyhmmer-0.10.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp311-cp311-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyhmmer-0.10.15-cp311-cp311-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyhmmer-0.10.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp310-cp310-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyhmmer-0.10.15-cp310-cp310-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhmmer-0.10.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp39-cp39-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyhmmer-0.10.15-cp39-cp39-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhmmer-0.10.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp38-cp38-macosx_11_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyhmmer-0.10.15-cp38-cp38-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhmmer-0.10.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp37-cp37m-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhmmer-0.10.15-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.15-cp36-cp36m-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhmmer-0.10.15.tar.gz.

File metadata

  • Download URL: pyhmmer-0.10.15.tar.gz
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyhmmer-0.10.15.tar.gz
Algorithm Hash digest
SHA256 bf8e97ce8da6fb5850298f3074640f3e998d5a655877f865c1592eb057dc7921
MD5 5774622a87c2e5d585be33fe5d604edb
BLAKE2b-256 cd1e2916fe904f28496ddea832da2e37c3aae7fe9597e3b230b8bf32d8141986

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3eab956d8f41d71074477b5124c8ec17cf28cc353d3023b6ed713c9f71e81ca
MD5 cfc699803b149761f40a3c1a234be1b0
BLAKE2b-256 7af548580dcfc1d8c9ba22741e6b40409001a531421242b09ae329b1faa3c98a

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1bc19978b9a3168bbf78276b4a3015916fa40fb76378e7a8e56686567c986c3
MD5 879027eab8e84eff174f084e9fc087fe
BLAKE2b-256 c6c14dfb1091e302f4d4e2a432b82699310cb4225bad3d4f9682728c76520d10

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 946713d711201824993b29d5de65b1c9e42b1e8c7ed54dfbac52ea8cae22c5f5
MD5 beb2aa7d81f8675345d6ba252f551908
BLAKE2b-256 0bee60bc1964cc116c1cec4fc1eefb7d57e504c91c1a6e5dc3ead6626b7fdd61

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40217c90c7c511076f6ce058352d73aa6e46dad12235dda68d365bc6d8ec7fc1
MD5 9d57df9e6ee140442d9e4f07b07ba059
BLAKE2b-256 f4d47ac7dda458f3132f25c6e19224e2866319721a3b650f74724b30c286f5be

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c060ebaf729b0946ce564a8747dbde440767c2118523f542500762a293d9f00
MD5 13149864b482fe0ae4308293fb01408b
BLAKE2b-256 df328cc131139805df3b0c586ffc3b971d4b9c355b8aaa94b1eb2570057874d6

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e277af9830e045aff7834fc0d020dd02b62ed38a85b8dd17245f571f819dbb2
MD5 63e3b9ab6e4e786a64fa591cbafaaa50
BLAKE2b-256 19dc0578698b611744b2f74cd85a57711a30f241c4ab5cd06cdd72a9b02d913a

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce588a088375a98487b99edfd088b744844f5e8ea8dec5015f74b57bf542aff1
MD5 40278ffa743c31605523ca0ea4d27a8e
BLAKE2b-256 35aeb878033dcdb15874cece76d6fa1d1b4a9a878b0da75c76329c6a8265439d

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1eb007ed89e8ab5c50c2093e9e626de9fb670459c25821ead220ed8b860ee8be
MD5 ee603cdb725a2e44fcbe457c6de9d9e3
BLAKE2b-256 54c9f24a1bce0313a089bbdae4fecf9a3ae762bf139564814294659517d92d65

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02381f7f08b67b727c9179aedda7643daf9c307ff9684f3e8ea2a35d1cc74b02
MD5 7b915678c0b704adc132fc8e866cd3e5
BLAKE2b-256 6f4e0e8537171c170cc7e474f21cb25c5ba8616be5ff565f084486c22294feea

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 320a4a3206d203e52ee53c18245d419c39a467ec3096cf3f9c9fb82f570867be
MD5 2db68bec66216ad7506504bbf83e47c6
BLAKE2b-256 a397264e7ba20ddf0e54097906e76e3ceb8a559ac773e74f100f3ff0c02aa074

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2345e46291f2a6f34a470378ab029d04a012dc2571df599236f7c40c6fa7c16
MD5 02bf87bfe8f42c3718d62849f1bfea51
BLAKE2b-256 ffa83ea04812950bf4f4837081d94963bff09430743a5a590faa7a6b67b30c4b

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07dc418d9c1d6a97f8f802e94b93a195f6d3ce8bdc552ac52ef16940f4951db3
MD5 08f55d52dfd482e94d8add378699850e
BLAKE2b-256 29abac9fdd283e36e7bd3bb84688fe7f2b34c60731f2eb9284e29cd6df19fbaa

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dac03e78302161f80fad63416ab3c230330cdc47e5574196b4e59af3b0a63475
MD5 1268d77222d1fa9036ecb70c85ee5233
BLAKE2b-256 b13aa2c55f3719cfa1dd1abc735b5a5c4d76e2c0daa83ab720b733ff292c961a

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58de16aafe9c1a15f02567805ae8519074b6ce4532854c61556b396ee9301aca
MD5 d8c77df7145dbd8872d317170a981add
BLAKE2b-256 db48bcdda33c83cca275fd0cfba9d2e4fa896aceec664305930c35cbb2ad8086

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b877eff56f9a9c22f30c165f6a65dfcbcea651083e4cf8622e5623669265f88a
MD5 7203a1b1c1e97e6e87b9e7806103566b
BLAKE2b-256 8e0408598d9b90f6a0256afd3cac9c7419383c93c0ca37e688560b380452bc92

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa5fa4c957724cf1c9c7cd4d38e0a359aa93817850c7d4fb80277462d5f1cc8e
MD5 3795559e497e8e816920d3c2a35e4128
BLAKE2b-256 bafc02a46b724d4ef85f5053d006804185e31cc44353dc1101531699b28283e0

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fdc2064d135458510a0c7517fc8fc0681fcc9064d47871b873b55734765c17e
MD5 1f591f3238e0c241dcf77df996c3a3c1
BLAKE2b-256 089e8e8f88155e60e9964baa702449322ec9f172d3fbae76f2f8ae2cfeeb05e6

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e773bb20a7f787918439cbdfd1cabb8d40b3e2021be93982c30da5e3d3813ce
MD5 7f120e34abdf3c1fecaab63c8e833186
BLAKE2b-256 d87798c73ec6a56803362eed8c603d9e99b33bc0ed7cb35793f32bd6f7c859aa

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4102d4c37b6004687ebb3cf79403900ac2ed5c854f8b830b6cd4be04bac579c3
MD5 fbddbde586f2a5c00589f2762e816992
BLAKE2b-256 36553fd4985e253c39184d430556177fe6fe49597d3f95b4a8f0ccbb1aa9b995

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c31811c61bf3785ec3e50590302d221e5be8ab3c3e529c29b3a2f82794fb5b9
MD5 9fb61290e73a0454dcc00ef3656e7d9a
BLAKE2b-256 6e36f5c5f6a3e6969a1fc61a199ed233a97c78558108aa1e6200266fb8ad896e

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbdd4a60db4cd4df7958bba89c56c1a252d301a8f01991bae0beb3851b4c80e9
MD5 ce2ce0dd593695df4d434e6f4a23e52d
BLAKE2b-256 d0b7fb82c80f44d827f8241db6313704adfee9e4d88c495fae3f6a77972c479a

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cbd00ee33298f317a4e62d05eaa83b2facc04234374633a11836d1e75a847bfc
MD5 20e506104eeea771f1ec8c9082a7f08b
BLAKE2b-256 609625f2447ae510fc995065cfd9064488f5f7ae7dff1a48bd850482a85f80bf

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1953514d0849e4a4d2e55476b1569350341d470817e4f37c25d24dde6779f1a7
MD5 dd35c741cc2ea5b6ba265e2a5b8959b9
BLAKE2b-256 79577e9a998f40eefcf29ad4203742931fac4d9359ada6fd088d679dbef33d73

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ba573e2791c12b4b5772e93b9023a6557d7e963a2070a3c2dc522e236bed536
MD5 279087261dc0d514b02fe19616c996c6
BLAKE2b-256 3232eae17b754c4e469dc485fa30702467802170894b6b6d5113007ff64e535d

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51ee4820c7afb2d902c7d277924ab13da71e16ba8eef3ed086c62f3aa30449e9
MD5 c58a478139a5298cd48ab656f17ca29d
BLAKE2b-256 3d4c8887a7746526dc81954971771ef18e877fd423a69aac3343c4f449047dbe

See more details on using hashes here.

File details

Details for the file pyhmmer-0.10.15-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.15-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 470e2899026133a584097be6488adbabed71bf050574de22df88d1f65e365a22
MD5 94ff1ecf0e0735acaca83a7645c2a315
BLAKE2b-256 9bdaaf49fd36256ec4e4f36e8ba19ed5179cfc8250c49fcc4f10b6218bd0708a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page