Skip to main content

Cython bindings and Python interface to HMMER3.

Reason this release was yanked:

Compiled without SSE4.1 features.

Project description

🐍🟡♦️🟦 PyHMMER Stars

Cython bindings and Python interface to HMMER3.

Actions Coverage PyPI Bioconda AUR Wheel Python Versions Python Implementations License Source Mirror GitHub issues Docs Changelog Downloads Paper

🗺️ Overview

HMMER is a biological sequence analysis tool that uses profile hidden Markov models to search for sequence homologs. HMMER3 is developed and maintained by the Eddy/Rivas Laboratory at Harvard University.

pyhmmer is a Python package, implemented using the Cython language, that provides bindings to HMMER3. It directly interacts with the HMMER internals, which has the following advantages over CLI wrappers (like hmmer-py):

  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyhmmer as a dependency to your project, and stop worrying about the HMMER binaries being properly setup on the end-user machine.
  • no intermediate files: Everything happens in memory, in Python objects you have control on, making it easier to pass your inputs to HMMER without needing to write them to a temporary file. Output retrieval is also done in memory, via instances of the pyhmmer.plan7.TopHits class.
  • no input formatting: The Easel object model is exposed in the pyhmmer.easel module, and you have the possibility to build a DigitalSequence object yourself to pass to the HMMER pipeline. This is useful if your sequences are already loaded in memory, for instance because you obtained them from another Python library (such as Pyrodigal or Biopython).
  • no output formatting: HMMER3 is notorious for its numerous output files and its fixed-width tabular output, which is hard to parse (even Bio.SearchIO.HmmerIO is struggling on some sequences).
  • efficient: Using pyhmmer to launch hmmsearch on sequences and HMMs in disk storage is typically as fast as directly using the hmmsearch binary (see the Benchmarks section). pyhmmer.hmmer.hmmsearch uses a different parallelisation strategy compared to the hmmsearch binary from HMMER, which can help getting the most of multiple CPUs when annotating smaller sequence databases.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to run biological analyses or workflows involving hmmsearch, hmmscan, nhmmer, phmmer, hmmbuild and hmmalign.

🔧 Installing

pyhmmer can be installed from PyPI, which hosts some pre-built CPython wheels for Linux and MacOS on x86-64 and Arm64, as well as the code required to compile from source with Cython:

$ pip install pyhmmer

Compilation for UNIX PowerPC is not tested in CI, but should work out of the box. Note than non-UNIX operating systems (such as Windows) are not supported by HMMER.

A Bioconda package is also available:

$ conda install -c bioconda pyhmmer

🔖 Citation

PyHMMER is scientific software, with a published paper in the Bioinformatics. Please cite both PyHMMER and HMMER if you are using it in an academic work, for instance as:

PyHMMER (Larralde et al., 2023), a Python library binding to HMMER (Eddy, 2011).

Detailed references are available on the Publications page of the online documentation.

📖 Documentation

A complete API reference can be found in the online documentation, or directly from the command line using pydoc:

$ pydoc pyhmmer.easel
$ pydoc pyhmmer.plan7

💡 Example

Use pyhmmer to run hmmsearch to search for Type 2 PKS domains (t2pks.hmm) inside proteins extracted from the genome of Anaerococcus provencensis (938293.PRJEB85.HG003687.faa). This will produce an iterable over TopHits that can be used for further sorting/querying in Python. Processing happens in parallel using Python threads, and a TopHits object is yielded for every HMM passed in the input iterable.

import pyhmmer

with pyhmmer.easel.SequenceFile("pyhmmer/tests/data/seqs/938293.PRJEB85.HG003687.faa", digital=True) as seq_file:
    sequences = list(seq_file)

with pyhmmer.plan7.HMMFile("pyhmmer/tests/data/hmms/txt/t2pks.hmm") as hmm_file:
    for hits in pyhmmer.hmmsearch(hmm_file, sequences, cpus=4):
      print(f"HMM {hits.query_name.decode()} found {len(hits)} hits in the target sequences")

Have a look at more in-depth examples such as building a HMM from an alignment, analysing the active site of a hit, or fetching marker genes from a genome in the Examples page of the online documentation.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⏱️ Benchmarks

Benchmarks were run on a i7-10710U CPU running @1.10GHz with 6 physical / 12 logical cores, using a FASTA file containing 4,489 protein sequences extracted from the genome of Escherichia coli (562.PRJEB4685) and the version 33.1 of the Pfam HMM library containing 18,259 domains. Commands were run 3 times on a warm SSD. Plain lines show the times for pressed HMMs, and dashed-lines the times for HMMs in text format.

Benchmarks

Raw numbers can be found in the benches folder. They suggest that phmmer should be run with the number of logical cores, while hmmsearch should be run with the number of physical cores (or less). A possible explanation for this observation would be that HMMER platform-specific code requires too many SIMD registers per thread to benefit from simultaneous multi-threading.

To read more about how PyHMMER achieves better parallelism than HMMER for many-to-many searches, have a look at the Performance page of the documentation.

🔍 See Also

Building a HMM from scratch? Then you may be interested in the pyfamsa package, providing bindings to FAMSA, a very fast multiple sequence aligner. In addition, you may want to trim alignments: in that case, consider pytrimal, which wraps trimAl 2.0.

If despite of all the advantages listed earlier, you would rather use HMMER through its CLI, this package will not be of great help. You can instead check the hmmer-py package developed by Danilo Horta at the EMBL-EBI.

⚖️ License

This library is provided under the MIT License. The HMMER3 and Easel code is available under the BSD 3-clause license. See vendor/hmmer/LICENSE and vendor/easel/LICENSE for more information.

This project is in no way affiliated, sponsored, or otherwise endorsed by the original HMMER authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhmmer-0.10.5.tar.gz (11.1 MB view details)

Uploaded Source

Built Distributions

pyhmmer-0.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp312-cp312-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyhmmer-0.10.5-cp312-cp312-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyhmmer-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp311-cp311-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyhmmer-0.10.5-cp311-cp311-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyhmmer-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp310-cp310-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyhmmer-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhmmer-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp39-cp39-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyhmmer-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhmmer-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp38-cp38-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyhmmer-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhmmer-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhmmer-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.5-cp36-cp36m-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhmmer-0.10.5.tar.gz.

File metadata

  • Download URL: pyhmmer-0.10.5.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyhmmer-0.10.5.tar.gz
Algorithm Hash digest
SHA256 1c9c6bb5600b96eb3386c524b24bf6eb1f51610017e82b585fe0f3b3c7cdbe03
MD5 dd1b79ea9cbd9f20b5899646140a13b1
BLAKE2b-256 ec9ac90e6d509e0f17485f47a87a987026664e98ee5ad2b9e26f735a1f7a727c

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63f84c54df3ff1f89ee1d31718826c872c8c7e1778bcf20811f16b2c3b97dc7a
MD5 54289324ba20ba95c2ac982086eca6fe
BLAKE2b-256 25de91c9d35b23bfeeb3cc9d80a137f47e124fb409b683c88e05cfc887d3426c

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e8f6d865310a2a3e41636dddb105c94e4bfa20a597e547a5b03f63ff1b27a13c
MD5 7aedfcfecf83046f0e244bc90e24acc8
BLAKE2b-256 fe0ce993c7b3da02279eff5f8dc92b154a9d85324d19dde3e59095c8536b79be

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e20d4aed80283fc19b5d50008af4e54a91d37938abeebb8a9e005d2a3ff10c57
MD5 0981bbd8762a8349a484e8ac79753b58
BLAKE2b-256 7c1fc463ab3bf1a1e7696ca6a263e72150d3d42eb8ed546daf2a98cf7e589dad

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d74a5ce8f06836ab850b4b100e8f890474460a5a886e1f0aa62b7ac3bf6b046f
MD5 1fdbd275efd6b93c709d70560f225634
BLAKE2b-256 0314d9b9e5f60c75c15c89b41747319a7481631838196bb5df6695c0c7e30459

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b183525220f332e22cc5c71027555497b72d67e348796e6d80aff34d7d05877
MD5 a116abb023489cea2f192b332f5f0709
BLAKE2b-256 7e6c55673db80653209fe58801eb0cc61af68e6c220250e0ad163f3225ac54c8

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e62833ae8149010ef13725a6dd6e599613550d0f188e072b346d7c255de17f57
MD5 c638eec39b0fac66095e58e5cd4c8cb7
BLAKE2b-256 16a98d4962628fbe5c4ab8630540300b2040f75244efccc2e07a900c95ae09b0

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a9ad547c8eb4bc5612b139c6fae8bc9affcf8cef924da4b86daabc24b7a8648
MD5 e2eb2ecfa60a7aa917dd659dc29b9712
BLAKE2b-256 5c7ea360741726058987f477de8364f0a2979257301cf16038ec9bb855566ba8

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 84cb5c630ade27c3a006ab134ab2866f3c4599cbe47803f2db8871599705409c
MD5 ebcf64d71886b4db5a1e0729dac09807
BLAKE2b-256 f94daa1ebd552d436643df7cc46b889e7408c6be47a5644741778c04814f539e

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8831cb179ab0d016b368031cf6294dc7cdeb7e84bf26147243812d73a1ffe4ee
MD5 29cd52ce51ab5a7fb5c80acb1d291e0d
BLAKE2b-256 e4de2abf1e3c8eb13bf79b53df6188ef5974b24de665fc23bd14ad274bb2264d

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94a7c23bf84a7887065656c9c802310700267ba937fda87231d9fbc2d746fdbd
MD5 46f16cdb19e6311ecd08ab45a35998b6
BLAKE2b-256 c3bbbc1ab40121bfce4aeaf7523976d824d69f125a6509a60d259c6e74d783ef

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd37d863f30bb6f845250b04f73d0ac76dc3fdfb6b0566f8af90a4d4c0748632
MD5 a48aa3a0bd5cf40e11b1ee2ed5ef13f4
BLAKE2b-256 109bebb0d788abfd731a0b655575612796e31cbd210a6f8f834e21e51f1ead1c

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec4e8ec01ec14c78d2c56d626f8fb4886aba7c9a08e0d6f9b6c2ec5d42b688a6
MD5 48ea3df358354ca2562de46d04f598b0
BLAKE2b-256 79da260ac934b281291c0ce175114ca8ee9d37b22a2ab6d6f7bd8b91eaeaa5d5

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80f8fcb6f8bc3cd1425511454e330f6f30a4379b481b80d21ea5ddaa15eca373
MD5 e7849801ed7a48fbe437a4c3240c675a
BLAKE2b-256 0f9c712d5bd36b014f8bcf4e279a43dda53eeecc323deb39e1194abb56accab4

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c71354da856726ebf1912ffef7b7c70439f489a2e2edebde08c3caa038f180e3
MD5 e99df8057540ce05fa1e4014bfab0fcf
BLAKE2b-256 5d34e1d7dbb79bf7ccec771d37cf57fa5cb2fb727c0804929ceed86f1358a745

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e66b79033d01a4502f710eff30e74a84191bd0a8778026ac04d4f256a8bf083
MD5 8da05eb41ed9a5e735431d9fcebfe470
BLAKE2b-256 92cfe8894fe9966ba59c6532bbe70d3589ec4b6ff893e4873712c1a53272b715

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a737eb1447cec2f74d8b090974592a19aeba2cf03fb19a5854f93792f42082f
MD5 b0a4b3ee590d0ce68ec0391943dcbf6c
BLAKE2b-256 8b50d5ec02b90efbab397657a21a869aacd2b9b0a6e128272d481669a5ba7096

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39d0e9b1859ab8fd6c2847524ada2f84fc336bc1844384ccdb75c44c8744db2d
MD5 ba679994f640c40aa59824905f248411
BLAKE2b-256 e3ecf198a11d0dd69e4f1b1f4f28c2b61867570ff53aedaee2a1a3269cfa7608

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e47dfaca006a783cfee2d48937833541587307993794d142b344b2a595e2729b
MD5 ec6cd0176b5559cacde1f01b476a678a
BLAKE2b-256 375ab3c6c5c2f00a83c854b3556d1de4ebb89b5f19ce49d052d6b9bda7e8610a

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef836f63d073355016530f6ce2ed491378d2ff9e25fb8d9b1fe43bff21f8cc70
MD5 384ee5f646d450d37b7a0bca24f1ae58
BLAKE2b-256 f338e08fb5f25b5dde150fa415421b4df4e7d12ecba1a091b7274ed97c6fbc51

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac95fca80ff5568408d0fc46a9223f212aaf7a36c9b0e48b61a37f4db38308f7
MD5 fb18fb200a7fb5eb0d035d3796429fcf
BLAKE2b-256 228a8615a0b2cd51c58ca2d52b9f3944b36ed8f5424d0a743f5b7deed9331380

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0271e5c6bc4bf140adc217f0e500519b6b5e5275511ffbee552f4972f5a81733
MD5 ed564e3b339c2537a88795fcbdd4a2ca
BLAKE2b-256 b554c57d445b3add7d05047bc207123b375a83656e2f7b60e7a194b468f3fc57

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7cc265d2808297def48929e88481e1084661e46a0177cd81ba5efc05f88b42c0
MD5 da192eb0e585645cdcc5b67951352400
BLAKE2b-256 2568051c8b0e42e2d703f190040d511e50571d6fe37d20bf815ff38e6654aed2

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7e99a251ddf834b853ca3e1647a288a181a53342b8c25f3ef87e9bd48f4ed2f
MD5 2db3f56f7846cc1309cbf4d5647b4ad8
BLAKE2b-256 93c112a536375e35090cc7b022d9b33d312ce6a6189308ba1c5f28fed683ed33

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e536a883e1186e86dbeceb1a43c6b93ce70ec2ac4cfd2485eb5767740095947d
MD5 8c2aa59e5e01e8f76258bf463efdcc8c
BLAKE2b-256 5fdb32462366ab5b4c0323b4dcdfa1dde9cdd1746124d66bf17ff3d596a19113

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 842fc370a4dcbfa7f3fa5ed3b295dd26c16398115d41976f93dd9f27e85c3492
MD5 400005edfaa8d125dce3df08a81ed988
BLAKE2b-256 37695e45dcda6bb4fda49c21ef92591f9114811a7a33d29a6a995496b300e6f6

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5f1bdeb15c5e1ca26e8a2c2a703797013af6f45991e450512c6c69014cb4451
MD5 199c16085005b91d95f6b10cc69e5c06
BLAKE2b-256 fc3cb7469a45569a1430735ea153b2ff74a845313a4dc75e6663ec39b571b4fb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page