Skip to main content

Cython bindings and Python interface to HMMER3.

Reason this release was yanked:

Compiled without SSE4.1 features.

Project description

🐍🟡♦️🟦 PyHMMER Stars

Cython bindings and Python interface to HMMER3.

Actions Coverage PyPI Bioconda AUR Wheel Python Versions Python Implementations License Source Mirror GitHub issues Docs Changelog Downloads Paper

🗺️ Overview

HMMER is a biological sequence analysis tool that uses profile hidden Markov models to search for sequence homologs. HMMER3 is developed and maintained by the Eddy/Rivas Laboratory at Harvard University.

pyhmmer is a Python package, implemented using the Cython language, that provides bindings to HMMER3. It directly interacts with the HMMER internals, which has the following advantages over CLI wrappers (like hmmer-py):

  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyhmmer as a dependency to your project, and stop worrying about the HMMER binaries being properly setup on the end-user machine.
  • no intermediate files: Everything happens in memory, in Python objects you have control on, making it easier to pass your inputs to HMMER without needing to write them to a temporary file. Output retrieval is also done in memory, via instances of the pyhmmer.plan7.TopHits class.
  • no input formatting: The Easel object model is exposed in the pyhmmer.easel module, and you have the possibility to build a DigitalSequence object yourself to pass to the HMMER pipeline. This is useful if your sequences are already loaded in memory, for instance because you obtained them from another Python library (such as Pyrodigal or Biopython).
  • no output formatting: HMMER3 is notorious for its numerous output files and its fixed-width tabular output, which is hard to parse (even Bio.SearchIO.HmmerIO is struggling on some sequences).
  • efficient: Using pyhmmer to launch hmmsearch on sequences and HMMs in disk storage is typically as fast as directly using the hmmsearch binary (see the Benchmarks section). pyhmmer.hmmer.hmmsearch uses a different parallelisation strategy compared to the hmmsearch binary from HMMER, which can help getting the most of multiple CPUs when annotating smaller sequence databases.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to run biological analyses or workflows involving hmmsearch, hmmscan, nhmmer, phmmer, hmmbuild and hmmalign.

🔧 Installing

pyhmmer can be installed from PyPI, which hosts some pre-built CPython wheels for Linux and MacOS on x86-64 and Arm64, as well as the code required to compile from source with Cython:

$ pip install pyhmmer

Compilation for UNIX PowerPC is not tested in CI, but should work out of the box. Note than non-UNIX operating systems (such as Windows) are not supported by HMMER.

A Bioconda package is also available:

$ conda install -c bioconda pyhmmer

🔖 Citation

PyHMMER is scientific software, with a published paper in the Bioinformatics. Please cite both PyHMMER and HMMER if you are using it in an academic work, for instance as:

PyHMMER (Larralde et al., 2023), a Python library binding to HMMER (Eddy, 2011).

Detailed references are available on the Publications page of the online documentation.

📖 Documentation

A complete API reference can be found in the online documentation, or directly from the command line using pydoc:

$ pydoc pyhmmer.easel
$ pydoc pyhmmer.plan7

💡 Example

Use pyhmmer to run hmmsearch to search for Type 2 PKS domains (t2pks.hmm) inside proteins extracted from the genome of Anaerococcus provencensis (938293.PRJEB85.HG003687.faa). This will produce an iterable over TopHits that can be used for further sorting/querying in Python. Processing happens in parallel using Python threads, and a TopHits object is yielded for every HMM passed in the input iterable.

import pyhmmer

with pyhmmer.easel.SequenceFile("pyhmmer/tests/data/seqs/938293.PRJEB85.HG003687.faa", digital=True) as seq_file:
    sequences = list(seq_file)

with pyhmmer.plan7.HMMFile("pyhmmer/tests/data/hmms/txt/t2pks.hmm") as hmm_file:
    for hits in pyhmmer.hmmsearch(hmm_file, sequences, cpus=4):
      print(f"HMM {hits.query_name.decode()} found {len(hits)} hits in the target sequences")

Have a look at more in-depth examples such as building a HMM from an alignment, analysing the active site of a hit, or fetching marker genes from a genome in the Examples page of the online documentation.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⏱️ Benchmarks

Benchmarks were run on a i7-10710U CPU running @1.10GHz with 6 physical / 12 logical cores, using a FASTA file containing 4,489 protein sequences extracted from the genome of Escherichia coli (562.PRJEB4685) and the version 33.1 of the Pfam HMM library containing 18,259 domains. Commands were run 3 times on a warm SSD. Plain lines show the times for pressed HMMs, and dashed-lines the times for HMMs in text format.

Benchmarks

Raw numbers can be found in the benches folder. They suggest that phmmer should be run with the number of logical cores, while hmmsearch should be run with the number of physical cores (or less). A possible explanation for this observation would be that HMMER platform-specific code requires too many SIMD registers per thread to benefit from simultaneous multi-threading.

To read more about how PyHMMER achieves better parallelism than HMMER for many-to-many searches, have a look at the Performance page of the documentation.

🔍 See Also

Building a HMM from scratch? Then you may be interested in the pyfamsa package, providing bindings to FAMSA, a very fast multiple sequence aligner. In addition, you may want to trim alignments: in that case, consider pytrimal, which wraps trimAl 2.0.

If despite of all the advantages listed earlier, you would rather use HMMER through its CLI, this package will not be of great help. You can instead check the hmmer-py package developed by Danilo Horta at the EMBL-EBI.

⚖️ License

This library is provided under the MIT License. The HMMER3 and Easel code is available under the BSD 3-clause license. See vendor/hmmer/LICENSE and vendor/easel/LICENSE for more information.

This project is in no way affiliated, sponsored, or otherwise endorsed by the original HMMER authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhmmer-0.10.6.tar.gz (11.1 MB view details)

Uploaded Source

Built Distributions

pyhmmer-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp312-cp312-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyhmmer-0.10.6-cp312-cp312-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyhmmer-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp311-cp311-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyhmmer-0.10.6-cp311-cp311-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyhmmer-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp310-cp310-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyhmmer-0.10.6-cp310-cp310-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhmmer-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp39-cp39-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyhmmer-0.10.6-cp39-cp39-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhmmer-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp38-cp38-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyhmmer-0.10.6-cp38-cp38-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhmmer-0.10.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp37-cp37m-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhmmer-0.10.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.6-cp36-cp36m-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhmmer-0.10.6.tar.gz.

File metadata

  • Download URL: pyhmmer-0.10.6.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyhmmer-0.10.6.tar.gz
Algorithm Hash digest
SHA256 47e017ccc523046400312afc937d4d68306f6ca0ed82e313deb3697d4fd8ccff
MD5 096b14e1fa4854ba3f520e49df5e3123
BLAKE2b-256 b5084b38436ffaf96ada254a2b1e77a4355c9f01053e4cc1d2b6e21ac000d1b1

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6607536bf86136b0a9b0e1417c07cdccf378b3fd4e66be5837c7e4a2a8372625
MD5 a2e97a0ca7c986ea33c875d0622fb7e2
BLAKE2b-256 6c0adfdefaf50479128136c0f2f983e2a1599605e322fc750d7f85a34f716559

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcef002ee931a79fb545520ca6348346d8820d48b858e89bebc030408e8a4efc
MD5 a77287a2940140f5a5f47c18db48a7c0
BLAKE2b-256 1bb99f7870bde62453dc024c991318b0fcc0f01c210786ebbe61f3d2eb5e0e05

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8705c69db8c8f09c5670a70a5d7584a8c105c1d34c9a7deb5cedc165f8482421
MD5 d496f4cd5ab9971ed63ff1db2d4e69f6
BLAKE2b-256 d65819145a891415652d165e028c54b8fee2f01ea719e671a2242b34f315bb5c

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c98795c0aa7ebe9514a5b808d887df5a4e945f5bfb03336f96cfa931711249b3
MD5 9268af3f9154ce73db0a07c2345f6ebd
BLAKE2b-256 ac2e46c03a8e7f5f4d80c67ad0820941c80cbf95f9d6eca585cff580a2bac370

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b2ad2f363adde215a46123d498aa619fe4cf3dc69a5cf819d070e8085f915cb
MD5 839c7c93163112c67e49556480c2756c
BLAKE2b-256 185fe007135b3ff1290d0e2bdf81f3e8694ddab4a5da43b8513c1acd0ee8bfe7

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e34d698969a0e71c321e46d893b36c50ee4aba5fa9b6e8e6531d35121d40d3dc
MD5 2f5fdacb9777a309b59f22467a5625b6
BLAKE2b-256 2bee4bdf77e57fee3f8973d0faacd76e95f5e4cd068b41e3ce8a68f722c3cd65

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6f7ba81a32b40ca463c28bcbc06ae8029238c7debbba6551f2200a1e8596332
MD5 2d9e2295b48a851d4191e5787c70502a
BLAKE2b-256 ce07e9d0b0f94da2065b208073c80f284da54d92179fdb475ba1117cbbc1cb53

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c6a5aab11593f3d9b145018172e5650ed036829afb751a8ca3d5067c812b56e
MD5 1801b1059169f1698e30679851bb8ee3
BLAKE2b-256 ecfdf33f44567cb36a50a0271dc3f9b05c40744adfc01afc9ef72cdbfe353520

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 129efffb572893f0ac4efe29fbd8b6195ab6fba649391826c7c9ede58d5f6ef4
MD5 0b7ed58a4164adc261bb2714b565c469
BLAKE2b-256 ae5f16bfa133c0f62de42be207f74373357c35ea70ed22e2f6c97f10e52468b6

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6097534ef912842fc041ae3c88ea46cb610313d2ef6fae73c708bfdfbb68d547
MD5 a4bd5d40a279d279ab8370f9cfeef331
BLAKE2b-256 e943596beaec054e9940f424dd9b395d3d5c881cd55e9fb7b1f1b7368fe4edc6

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 feffaf6651422b95c079b7221c69199216260b27d0d2effbf72d6e4fb21b9a7f
MD5 42d338b4414424b5b9994246ed94f888
BLAKE2b-256 43f30ceb65f4c1424c44dd6ee1b383a1cfab0ec327542087054339459e079d49

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2deba5d5034c8e78a245e30521df4eca8b7bfa37143e85b655f082e619c8ae7c
MD5 d82ba4147a427e1b941f54c6dc749e18
BLAKE2b-256 9b0dc57809cda7ef2c22fb5745e426e337f68bb67a74595aeae22f7a92a2167f

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3945344517d6076591fcc41cf9061f5cd7ab21dccf8810b79b502945a5c6cd3c
MD5 64d45021ba11d74163c172034ddb5e5c
BLAKE2b-256 46fc4b9ef4d7eebf3ab4967e2d8cc4dfb2cfa5594519191c8e3cc508d645c4af

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8ce3680d3b276192321decf366d3855f54e587f69d61dc9d6c9cb4908fffd0c
MD5 bf44796435a149885a29a2530ae15d0a
BLAKE2b-256 33c7e6197f57940e08a6c05065e2355504004d8f01ef7915298f18370fae43de

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03c1a32e84d2de00abc62beacb639483ac2854db7054073b5da6f55b09ced65c
MD5 4427379391f82fe6dbcee5c5f1717089
BLAKE2b-256 ce58b668e8460ee6cbd510b179b341b056502137c666aec4ffa516901b4548fc

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1fa7927f7b577a5f1c2a8d806ab30b7c2d9f215c1c4b644855a38fe52fbb128
MD5 6b031f63820f9a98c6170af36ff25b3d
BLAKE2b-256 ee97c71f8a0f2c2f81de9d197673d03c1844cad081c3b7266abebfb84596f486

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c193eccd86cbd016f08e43a3e97defe393d8c44e5d7b50fca601a507b449da5a
MD5 5276335372ee3e65529d6b16cc9caf0a
BLAKE2b-256 2bc9189c703f4aa3075c020c3f9c0f3982888eae2df35737fdc8d8085906e3b2

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f28c6f910110a2d9971446a7cc947e77f1182722636ae18ca9b74fc2694c8cf7
MD5 54fefc2529e22c2361cee3df5cae85d1
BLAKE2b-256 bf84272107e2c70e709a4eabd3b482cf75d721c189d742edea50af21a5f8730e

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6efe287ed485bfb98359eacd61f02791c3d5156240452b174607ca6210b306e
MD5 e439968f52f7e50e35b167422001b6fa
BLAKE2b-256 c66b9582818877a19a36fc8aca6ecc8e38bb0d06c25388ccaa8c6d4bc6fde737

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a923490eeeda7e0468bf8c73d0ef9f28c3eb696259de68ec38545f30ec5037f0
MD5 325ea84bdb97bd18175bf2a5171e18f2
BLAKE2b-256 4afb98257bae6fed4f90a4ee8603311556730b581fc899705c171fbd78a70c07

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6587070968dd44a54dbe3de1c0a22ed6a7cba99384128c7bebc2bd116699a97
MD5 8d1036d6f7166d99fb26cfe87c6c5fec
BLAKE2b-256 8694c6f6e3460fb18ff77c3bff158ed4a69f9df114609d2da8203ad337646669

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3551173bb4368a4002b7b9944426f27408b7d5a1149ee31a2254c4057cb9fe84
MD5 b06ff8ce103b98f30b6db083c786c6a0
BLAKE2b-256 35f335c05ccfef3f82a597f5bbe97b17bb39ccc4c8ffbab5ed6eef980c3cec77

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d41f2e6bdf57675f0c556c3545d45c8e143319a45cb912209a1d7ecd0431b347
MD5 d8517cd39c4992aaa070f9cba49fcf20
BLAKE2b-256 700c89a487c531ad3f1e0d53dfae125cdc53b5f91d43a296a1b6d256568ce763

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ada1f9d4cafb55dfd21c18c33296a783fdb496b0e18b5b1c022a4e48f5678ce
MD5 c6927947cb06a750fbfc7601e89ae6be
BLAKE2b-256 14d9e3ad642ab0eb7cd1c5abac196c313d18606a5a7875977ff43dd88d800158

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44f08c7c26321c8d7bb367e26919d1dfb8395203bfa2354bc836fd047019fcf6
MD5 dbc413b87c8138d3d0f5fce05ef2c6a7
BLAKE2b-256 c09e19ae58c569f5c5b1b21f53b3eb76af1307fb80d6713fb0f2dd3c55583bf1

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.6-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.6-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efec0474cb2722d49fc035d3997691637e7026c6a24ddc467b98900f669d7275
MD5 e71e24b190b1f31b2da6aa02e489db73
BLAKE2b-256 6bddeacfc101ca031beda782b743d8c25dd527645163a5dd67839af373b852ea

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page