Skip to main content

Cython bindings and Python interface to HMMER3.

Reason this release was yanked:

Compiled without SSE4.1 features.

Project description

🐍🟡♦️🟦 PyHMMER Stars

Cython bindings and Python interface to HMMER3.

Actions Coverage PyPI Bioconda AUR Wheel Python Versions Python Implementations License Source Mirror GitHub issues Docs Changelog Downloads Paper Citations

🗺️ Overview

HMMER is a biological sequence analysis tool that uses profile hidden Markov models to search for sequence homologs. HMMER3 is developed and maintained by the Eddy/Rivas Laboratory at Harvard University.

pyhmmer is a Python package, implemented using the Cython language, that provides bindings to HMMER3. It directly interacts with the HMMER internals, which has the following advantages over CLI wrappers (like hmmer-py):

  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pyhmmer as a dependency to your project, and stop worrying about the HMMER binaries being properly setup on the end-user machine.
  • no intermediate files: Everything happens in memory, in Python objects you have control on, making it easier to pass your inputs to HMMER without needing to write them to a temporary file. Output retrieval is also done in memory, via instances of the pyhmmer.plan7.TopHits class.
  • no input formatting: The Easel object model is exposed in the pyhmmer.easel module, and you have the possibility to build a DigitalSequence object yourself to pass to the HMMER pipeline. This is useful if your sequences are already loaded in memory, for instance because you obtained them from another Python library (such as Pyrodigal or Biopython).
  • no output formatting: HMMER3 is notorious for its numerous output files and its fixed-width tabular output, which is hard to parse (even Bio.SearchIO.HmmerIO is struggling on some sequences).
  • efficient: Using pyhmmer to launch hmmsearch on sequences and HMMs in disk storage is typically as fast as directly using the hmmsearch binary (see the Benchmarks section). pyhmmer.hmmer.hmmsearch uses a different parallelisation strategy compared to the hmmsearch binary from HMMER, which can help getting the most of multiple CPUs when annotating smaller sequence databases.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to run biological analyses or workflows involving hmmsearch, hmmscan, nhmmer, phmmer, hmmbuild and hmmalign.

🔧 Installing

pyhmmer can be installed from PyPI, which hosts some pre-built CPython wheels for Linux and MacOS on x86-64 and Arm64, as well as the code required to compile from source with Cython:

$ pip install pyhmmer

Compilation for UNIX PowerPC is not tested in CI, but should work out of the box. Note than non-UNIX operating systems (such as Windows) are not supported by HMMER.

A Bioconda package is also available:

$ conda install -c bioconda pyhmmer

🔖 Citation

PyHMMER is scientific software, with a published paper in the Bioinformatics. Please cite both PyHMMER and HMMER if you are using it in an academic work, for instance as:

PyHMMER (Larralde et al., 2023), a Python library binding to HMMER (Eddy, 2011).

Detailed references are available on the Publications page of the online documentation.

📖 Documentation

A complete API reference can be found in the online documentation, or directly from the command line using pydoc:

$ pydoc pyhmmer.easel
$ pydoc pyhmmer.plan7

💡 Example

Use pyhmmer to run hmmsearch to search for Type 2 PKS domains (t2pks.hmm) inside proteins extracted from the genome of Anaerococcus provencensis (938293.PRJEB85.HG003687.faa). This will produce an iterable over TopHits that can be used for further sorting/querying in Python. Processing happens in parallel using Python threads, and a TopHits object is yielded for every HMM passed in the input iterable.

import pyhmmer

with pyhmmer.easel.SequenceFile("pyhmmer/tests/data/seqs/938293.PRJEB85.HG003687.faa", digital=True) as seq_file:
    sequences = list(seq_file)

with pyhmmer.plan7.HMMFile("pyhmmer/tests/data/hmms/txt/t2pks.hmm") as hmm_file:
    for hits in pyhmmer.hmmsearch(hmm_file, sequences, cpus=4):
      print(f"HMM {hits.query_name.decode()} found {len(hits)} hits in the target sequences")

Have a look at more in-depth examples such as building a HMM from an alignment, analysing the active site of a hit, or fetching marker genes from a genome in the Examples page of the online documentation.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⏱️ Benchmarks

Benchmarks were run on a i7-10710U CPU running @1.10GHz with 6 physical / 12 logical cores, using a FASTA file containing 4,489 protein sequences extracted from the genome of Escherichia coli (562.PRJEB4685) and the version 33.1 of the Pfam HMM library containing 18,259 domains. Commands were run 3 times on a warm SSD. Plain lines show the times for pressed HMMs, and dashed-lines the times for HMMs in text format.

Benchmarks

Raw numbers can be found in the benches folder. They suggest that phmmer should be run with the number of logical cores, while hmmsearch should be run with the number of physical cores (or less). A possible explanation for this observation would be that HMMER platform-specific code requires too many SIMD registers per thread to benefit from simultaneous multi-threading.

To read more about how PyHMMER achieves better parallelism than HMMER for many-to-many searches, have a look at the Performance page of the documentation.

🔍 See Also

Building a HMM from scratch? Then you may be interested in the pyfamsa package, providing bindings to FAMSA, a very fast multiple sequence aligner. In addition, you may want to trim alignments: in that case, consider pytrimal, which wraps trimAl 2.0.

If despite of all the advantages listed earlier, you would rather use HMMER through its CLI, this package will not be of great help. You can instead check the hmmer-py package developed by Danilo Horta at the EMBL-EBI.

⚖️ License

This library is provided under the MIT License. The HMMER3 and Easel code is available under the BSD 3-clause license. See vendor/hmmer/LICENSE and vendor/easel/LICENSE for more information.

This project is in no way affiliated, sponsored, or otherwise endorsed by the original HMMER authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhmmer-0.10.7.tar.gz (11.1 MB view details)

Uploaded Source

Built Distributions

pyhmmer-0.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp312-cp312-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyhmmer-0.10.7-cp312-cp312-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyhmmer-0.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp311-cp311-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyhmmer-0.10.7-cp311-cp311-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyhmmer-0.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp310-cp310-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyhmmer-0.10.7-cp310-cp310-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhmmer-0.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp39-cp39-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyhmmer-0.10.7-cp39-cp39-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhmmer-0.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp38-cp38-macosx_11_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyhmmer-0.10.7-cp38-cp38-macosx_10_9_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhmmer-0.10.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp37-cp37m-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhmmer-0.10.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyhmmer-0.10.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pyhmmer-0.10.7-cp36-cp36m-macosx_10_9_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhmmer-0.10.7.tar.gz.

File metadata

  • Download URL: pyhmmer-0.10.7.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyhmmer-0.10.7.tar.gz
Algorithm Hash digest
SHA256 5f738644c413bba5df69aaf6eee8c847bacd34fd58dd69e9ca63cfaa326c19a9
MD5 c5b1768945767db3046d8e5a8b4f6e4e
BLAKE2b-256 a0e5e94ca68dc360a79a92f8acb8aef19f5145657c07e5edd5b150a482110aad

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf5535ce69ac1b46c3788baf45e009e9cae02a0f6884f435101c5fc4e7d2e311
MD5 b621e6b0ecfe9a1546e9de05c37ad25c
BLAKE2b-256 955d34366345d75c3e5004e9c50e0f874897ac4f899da77d84d0d0512211febb

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d16e78ad71fcad4380f9c08ac8c1e6426aab76daa2b1468aca53696fefde80ac
MD5 d309449e33213ed9a2633e7858a4fe6e
BLAKE2b-256 6e1d48ff6d4f1ecb4216716559b76d9a4433942f919083d76131f7762a7f1744

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6629f2e00ecda791fa703c457ada449f2e0e2ce602266454ca5c574f84d9bc3c
MD5 6595d2dddb97ee375d9f6827f9647358
BLAKE2b-256 7cb413b6f7a25fcbd06f790f3dc7209a17f6b257bd521ee7b2d95cafabc70ec6

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6dd7b46ddf34aa330eb58fd31034a54d10ffc55578f0d2a9689db4b54ed335ed
MD5 04463c36f48c73659fdee5dc9b32a13a
BLAKE2b-256 3f09353265cfadd3f489f61f1039645fd4c22b692dc97a6ba36890fa66095fa9

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7412b94789e002e4ebf4258abc5d2c36fadf97b2d0d2a8320dbc852057144550
MD5 6dfdca07bda83adff8701ef7a68d3b2e
BLAKE2b-256 d27a75f7395a09f44f21e254605826b148e94bce74e1017c6f44ff4dffa2457b

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9eeff15fa4976902e6a27d7ef8bdc4a8b44ae54c4a1e33793ac35bcb8ba748af
MD5 810247f61016580ed71f0ed9d4471694
BLAKE2b-256 a2a419c28c64994d2114d9bad013b7f6d5c5d93e287aac718e8769ee2c51b077

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6fe58fcc564270f7955c9f419119d40e7495064395a7a25b457d6d1ec40a826
MD5 68bb42100d460aa7073023af14a4b3e2
BLAKE2b-256 da713bf29990f74a55b87bb8e5806472a7b466b890382b3f7753d916e7ee38db

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19293c3e651d5ffe943841d25457eea0f6fdbbbd492122728f9e5e03209b7acf
MD5 eb20d15553bf401e3295ba73aa27422c
BLAKE2b-256 5eac68493ff71b49171df2fd9cf68fc86cf25479b5f00fddb576042a423083a7

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9dd8036feb7ece85dfff3f1ee8da4623c58a97e64e5eb240f3df0d7a218141d2
MD5 8c546ac68fa0f1f38633fe297b1af2ed
BLAKE2b-256 7d782b8687871553e9696a14f3bed63181e8c61098d76312074f1cd34bce5db2

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a4aab5760305099be1645e1bfeaceb3baefa29c570d7f3dbeb01c0eda40be2d
MD5 9a0619bf134f237e2b85a3f100aba88d
BLAKE2b-256 3fe398f53bccf9b43b4d437b69c4b3d933fb9a2403cbb130d1595dd4f064380e

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8850df08b6fac6f322033303d938950a55fd374f649b7fadc014102641f7ac84
MD5 1c22dc916a82f15df3aa63ad1d168ee8
BLAKE2b-256 a765f1a6acee5d9bbfd3f956f8e291fc0dc3a7560804a88b35bc8a8845253822

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66317901d500b3262849d97d285cd2acf8c6ae0a52c00dfa12efdfca2a529e74
MD5 3967f8c0db9df0be10a326becbf1db0e
BLAKE2b-256 c21c4b78b8998b1b5616cc162aab821d3e8591376aa9e6c4b005fbac8175568d

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6adbe216f4da803baa634baf55e0f3d11cda7913bed4b4c30f8a2c5bfb12d6e
MD5 83d5c91d59f42f522ae48ea2df080d91
BLAKE2b-256 f17b49e96ad658af263b935c9799ad5295d8ef4f9ac7f16a228f1170d9e57574

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55d3387103b7d4a97f70a55a75741084198703346d74e098d8a7afefbc549fde
MD5 c2eb005672a00e2ca063bc38536f32d8
BLAKE2b-256 b22929259600f4f1ab9c0f7082d59571539741b9fdd934b31f8467d7157f5ca0

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9792bdfded54449af777b59dcda5113764b9b736c84d77eabd1080a80865dd3b
MD5 d546f63b87cc2155c7d045b1482165c8
BLAKE2b-256 92e2880da096a6ba73ba4e57599650177a95ca08e051d50c9a49f8f7ea83d44d

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83b43147fe869d88f7618059c4da968168d82e2beb458486ecb0d9ec2106642e
MD5 1ba609d6f26936fe7545c567d7d0f5ef
BLAKE2b-256 5f938edcd37bc5f132b1de553bddaf2c1657f53e01a1aba08a2c785a6cab18c4

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3528324af8023243bcf100a558ebb340d3266b3c64569eda2797a3e58116968
MD5 04581b6ee7dd0355fb384dd68315ea93
BLAKE2b-256 c1817e0e9668b6b702273401f3875b2107754766bcb84ca9df07e1304b6ffd64

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51ab0e0c254b91f641591a58a04690a3be1d20f1bfe94fa973ee78ffa3c19ca9
MD5 572355f1a0297e27cd59e669526e0356
BLAKE2b-256 a801ab2416a788a56815fe38234fdbde3953f45c3272a74c7218e9da9eaa6b29

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03452b6180f53cebe4630f945c27ae5e6a7daa9a5c89c3bb29296bf5e86a82c2
MD5 92ef236f728eed62d681beaebab6b5e2
BLAKE2b-256 112f64657a2d3e8a9ff971986637b224df3615b97b348c0c9f73d59b8bbdfe70

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fabeadc88f2f7d2f06891dd1da431a62af2f6d5dda5a3f437c481760d26f265
MD5 cd34564231400d087bc9986b2efcde5f
BLAKE2b-256 d545c0f628141c255449a67bfe67d05a76fb69bbbf04b6177a43bd4ce3eb8cdc

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c375ae797f99af69379fa58b2ce50cd5b422d2d1732ed5b93aee9e94b19c4cd8
MD5 8f9569b5b91b4e33767ae47093949ad8
BLAKE2b-256 9b9354599fc612600a21753dc11db437ffbe4f8320b8f33d467fc0675d3536fc

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa00f856e962248a5a99058475270cc9e40d10edd6a9713d706ad3a44c41dc9d
MD5 ef96e614f14d9041f9d55beb7c5656da
BLAKE2b-256 3630ce5809cf15f260e4cbe8818b7b393811fad5e73f34407964095bef0c38ab

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 374c0a525927502c9b3b825d4ae7549490f6d5cb3d425a3b4676020362cbf289
MD5 104047c72d3f1770dc8b0ec5239d54bd
BLAKE2b-256 00e6d24d375911ac5d88dae3c568c8b21ffd8e4ca8a2d0158bad391381ec1ca6

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60ae9a2d6b4166dc876b644baf3274307a85984adde659b563907c3316fa602c
MD5 14368bd6ce6c5b98ea73ec81d139b3c5
BLAKE2b-256 47caa4bca7eb5958a40b995d4863be5f54aaf01f98b94b14284a66c781a6d9c5

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 727f31fa2ec01e9a72bcadc63a66128a165b9a857cce3b46a9e925141553bd54
MD5 da5c0ef14301f5111edea4858bb9fae0
BLAKE2b-256 8c2422c7688ecb484490bd6da7658462e9727f6523944f091b9a1ae1d6a85807

See more details on using hashes here.

Provenance

File details

Details for the file pyhmmer-0.10.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhmmer-0.10.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d56ac33032ea809434da989c636430f87930a93273cc12842b1eb41c45dfc0a
MD5 50093eb718feef4ce46003fa80346c72
BLAKE2b-256 2c3bf7be3911d40e6b4e4fae66b6eb724c8db8635b7ffdf1fc19d11802952c6c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page