Python for Hierarchical Risk Parity
Project description
pyhrp
A recursive implementation of the Hierarchical Risk Parity (hrp) approach by Marcos Lopez de Prado. We take heavily advantage of the scipy.cluster.hierarchy package.
Here's a simple example
import numpy as np
from pyhrp.cluster import root
from pyhrp.graph import dendrogram
from pyhrp.hrp import dist, hrp_feed
# use a small covariance matrix
cov = np.array([[1, 0.2, 0], [0.2, 2, 0.0], [0, 0, 3]])
# we compute the rootnode of a graph here
# The rootnode points to left and right and has an id attribute.
rootnode, link = root(dist(cov), 'ward')
# plot the dendrogram
ax = dendrogram(link, orientation="left")
ax.get_figure().savefig("dendrogram.png")
v, weights = hrp_feed(rootnode, cov=cov)
print(v)
print(np.linalg.multi_dot([weights, cov, weights]))
print(weights)
print(weights.sum())
Installation:
pip install pyhpr
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyhrp-0.0.5.tar.gz
(4.0 kB
view details)
File details
Details for the file pyhrp-0.0.5.tar.gz
.
File metadata
- Download URL: pyhrp-0.0.5.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/2.7.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7ba542d4f0a62208c987774ae5533a5e34855a56972ac948434fedc441545c9 |
|
MD5 | c7f46b88431c3c3883ddd029a3e7d25f |
|
BLAKE2b-256 | 72808a1d140df29e92e098ec1872b591e400adf843c7d4ab76855fa237443f09 |