Skip to main content

MPI parallel map and cluster scheduling

Project description

About Pyina

The pyina package provides several basic tools to make MPI-based parallel computing more accessable to the end user. The goal of pyina is to allow the user to extend their own code to MPI-based parallel computing with minimal refactoring.

The central element of pyina is the parallel map algorithm. pyina currently provides two strategies for executing the parallel-map, where a strategy is the algorithm for distributing the work list of jobs across the availble nodes. These strategies can be used “in-the-raw” (i.e. directly) to provide the map algorithm to a user’s own mpi-aware code. Further, in pyina.mpi pyina provides pipe and map implementations (known as “easy map”) that hide the MPI internals from the user. With the “easy map”, the user can launch their code in parallel batch mode – using standard Python and without ever having to write a line of MPI code.

There are several ways that a user would typically launch their code in parallel – directly with mpirun or mpiexec, or through the use of a scheduler such as torque or slurm. pyina encapsulates several of these “launchers”, and provides a common interface to the different methods of launching a MPI job.

pyina is part of pathos, a Python framework for heterogeneous computing. pyina is in active development, so any user feedback, bug reports, comments, or suggestions are highly appreciated. A list of issues is located at https://github.com/uqfoundation/pyina/issues, with a legacy list maintained at https://uqfoundation.github.io/project/pathos/query.

Major Features

pyina provides a highly configurable parallel map interface to running MPI jobs, with:

  • a map interface that extends the Python map standard

  • the ability to submit batch jobs to a selection of schedulers

  • the ability to customize node and process launch configurations

  • the ability to launch parallel MPI jobs with standard Python

  • ease in selecting different strategies for processing a work list

Current Release

The latest released version of pyina is available at:

https://pypi.org/project/pyina

pyina is distributed under a 3-clause BSD license.

Development Version

You can get the latest development version with all the shiny new features at:

https://github.com/uqfoundation

If you have a new contribution, please submit a pull request.

Installation

pyina can be installed with pip:

$ pip install pyina

A version of MPI must also be installed. Launchers in pyina that submit to a scheduler will throw errors if the underlying scheduler is not available, however a scheduler is not required for pyina to execute.

Requirements

pyina requires:

  • python (or pypy), >=3.9

  • setuptools, >=42

  • cython, >=0.29.30

  • numpy, >=1.0

  • mpi4py, >=1.3

  • dill, >=0.4.1

  • pox, >=0.3.7

  • pathos, >=0.3.5

More Information

Probably the best way to get started is to look at the documentation at http://pyina.rtfd.io. Also see https://github.com/uqfoundation/pyina/tree/master/examples and pyina.tests for a set of scripts that demonstrate the configuration and launching of mpi-based parallel jobs using the “easy map” interface. You can run the tests with python -m pyina.tests. A script is included for querying, setting up, and tearing down an MPI environment, see python -m pyina for more information. The source code is generally well documented, so further questions may be resolved by inspecting the code itself. Please feel free to submit a ticket on github, or ask a question on stackoverflow (@Mike McKerns). If you would like to share how you use pyina in your work, please send an email (to mmckerns at uqfoundation dot org).

Important classes and functions are found here:

  • pyina.mpi [the map API definition]

  • pyina.schedulers [all available schedulers]

  • pyina.launchers [all available launchers]

Mapping strategies are found here:

  • pyina.mpi_scatter [the scatter-gather strategy]

  • pyina.mpi_pool [the worker pool strategy]

pyina also provides a convience script that helps navigate the MPI environment. This script can be run from anywhere with:

$ mpi_world

If may also be convienent to set a shell alias for the launch of ‘raw’ mpi-python jobs. Set something like the following (for bash):

$ alias mpython1='mpiexec -np 1 `which python`'
$ alias mpython2='mpiexec -np 2 `which python`'
$ ...

Citation

If you use pyina to do research that leads to publication, we ask that you acknowledge use of pyina by citing the following in your publication:

M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis,
"Building a framework for predictive science", Proceedings of
the 10th Python in Science Conference, 2011;
http://arxiv.org/pdf/1202.1056

Michael McKerns and Michael Aivazis,
"pathos: a framework for heterogeneous computing", 2010- ;
https://uqfoundation.github.io/project/pathos

Please see https://uqfoundation.github.io/project/pathos or http://arxiv.org/pdf/1202.1056 for further information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyina-0.3.2.tar.gz (133.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyina-0.3.2-py3-none-any.whl (46.2 kB view details)

Uploaded Python 3

File details

Details for the file pyina-0.3.2.tar.gz.

File metadata

  • Download URL: pyina-0.3.2.tar.gz
  • Upload date:
  • Size: 133.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.14.2

File hashes

Hashes for pyina-0.3.2.tar.gz
Algorithm Hash digest
SHA256 5e83d5f8487f7062cb1d14322798183ec9ecfd713d16c75f5fec3868702f7a4f
MD5 6cb4c05368426ef6d4d67ef03bb39746
BLAKE2b-256 0bbc7268f727c0b56a340e670f0c9c0f26aca0a68f1dfb31f7e975b3b98a7ee2

See more details on using hashes here.

File details

Details for the file pyina-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: pyina-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 46.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.14.2

File hashes

Hashes for pyina-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6763b1b41d2c1dc1389cb0f577dd98e2b3a3e39e1ac6160a9445ee2834236af7
MD5 ac4fe681dd1064ca2f92feb8c9127a79
BLAKE2b-256 43762459eab3dc3b5cf4cad72c62ff9b3c7bef00a0c9d571a736a8959032aae9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page