Skip to main content

Python bindings to Intel Instrumentation and Tracing Technology (ITT) API.

Project description

PyPI PyPI - Python Version CI

pyitt

pyitt is a Python binding to Intel Instrumentation and Tracing Technology (ITT) API. It provides a convenient way to mark up the Python code for further performance analysis using performance analyzers from Intel like Intel VTune or others.

pyitt supports following ITT APIs:

  • Collection Control API
  • Counter API
  • Domain API
  • Event API
  • Frame API
  • Id API
  • Processor Trace Control API
  • String Handle API
  • Task API
  • Thread Naming API

Usage

The main goal of the project is to provide the ability to instrument a Python code using ITT API in the Pythonic way. pyitt provides wrappers that simplify markup of Python code.

import pyitt

@pyitt.task
def workload():
  pass

workload()

pyitt.task can be used as a decorator. In this case, the name of a callable object (workload function in this example) will be used as a name of the task and the task will be attributed to a default domain named 'pyitt'. If you want to change the default name and/or other parameters for the task (e.g. task domain), you can pass them as arguments to pyitt.task:

import pyitt

@pyitt.task('My Task', domain='My Task Domain')
def workload():
  pass

workload()

Also, pyitt.task returns the object that can be used as a context manager:

import pyitt

with pyitt.task():
    # some code here...
    pass

If the task name is not specified, the pyitt.task uses call site information (filename and line number) to give the name to the task. A custom name for the task and other task parameters can be specified via arguments for pyitt.task in the same way as for the decorator form.

Installation

pyitt package is available on PyPi and can be installed in the usual way for the supported configurations:

python -m pip install pyitt

Build

The native part of pyitt module is written using C++20 standard, therefore you need a compiler that supports this standard, for example GCC-10 for Linux and Visual Studio 2022 for Windows.

Ubuntu 22.04

  1. Install the compiler and Python utilities to build module:

    sudo apt install gcc g++ python3-pip
    
  2. Clone the repository:

    git clone --recurse-submodules https://github.com/esuldin/pyitt.git
    
  3. Build and install pyitt:

    cd pyitt
    python3 -m pip install .
    

Windows 10/11

  1. Install Python 3.8+ together with pip utility.

  2. Install Visual Studio 2022. Make sure that "Desktop development with C++" workload is selected.

  3. Clone the repository

    git clone --recurse-submodules https://github.com/esuldin/pyitt.git
    
  4. Build and install pyitt

    cd pyitt
    python -m pip install .
    

Compatibility with other Python binding to ITT API

pyitt provides compatibility layers that allow you to use pyitt as a "backend" for other Python bindings to the ITT API.

itt-python

pyitt.compatibility_layers.itt_python fully implements the itt-python public API. It allows you to switch to pyitt without anything else by only replacing the imports. For example, the following import for itt-python:

import itt

should be replaced with:

import pyitt.compatibility_layers.itt_python as itt

For more details, please see itt_python_compatibility_sample.py.

ittapi

pyitt.compatibility_layers.ittapi implements most of ittapi Python binding public API. Technically, the Python binding to ITT API that is included in the ITT API repository is based on the pyitt v1.1.0 code base. But, the implementations have been diverging since then. However, in most cases, it should be possible to use newer versions of pyitt instead of ittapi just by replacing the imports. For example, the import for ittapi:

import ittapi

should be replaced with:

import pyitt.compatibility_layers.ittapi as ittapi

Known Issues and Limitations

  • If pyitt is used in a function which is specified as a target for calls from multiprocessing module and an application is profiled on Linux with Intel VTune Profiler, the following error may occur:

    <...>/data.0/userapicollector-*.trace' (Data file is corrupted)
    

    This issue is caused by libittnotify_collector.so library which is a part of Intel VTune Profiler. Unfortunately, the issue is not resolvable within pyitt itself. However, a potential workaround is to use 'spawn' method for multiprocessing module in the profiled application:

    import multiprocessing
    ...
    if __name__ == '__main__':
        multiprocessing.set_start_method('spawn')
    

    Please see #1 for more technical information.

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyitt-1.7.2.tar.gz (106.5 kB view details)

Uploaded Source

Built Distributions

pyitt-1.7.2-pp310-pypy310_pp73-win_amd64.whl (52.7 kB view details)

Uploaded PyPy Windows x86-64

pyitt-1.7.2-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (65.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (65.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-pp39-pypy39_pp73-win_amd64.whl (52.7 kB view details)

Uploaded PyPy Windows x86-64

pyitt-1.7.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (65.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (64.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-cp313-cp313-win_amd64.whl (52.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

pyitt-1.7.2-cp313-cp313-win32.whl (47.5 kB view details)

Uploaded CPython 3.13 Windows x86

pyitt-1.7.2-cp313-cp313-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pyitt-1.7.2-cp313-cp313-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

pyitt-1.7.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (230.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-cp312-cp312-win_amd64.whl (52.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyitt-1.7.2-cp312-cp312-win32.whl (47.5 kB view details)

Uploaded CPython 3.12 Windows x86

pyitt-1.7.2-cp312-cp312-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyitt-1.7.2-cp312-cp312-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

pyitt-1.7.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (243.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (226.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-cp311-cp311-win_amd64.whl (52.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyitt-1.7.2-cp311-cp311-win32.whl (47.5 kB view details)

Uploaded CPython 3.11 Windows x86

pyitt-1.7.2-cp311-cp311-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyitt-1.7.2-cp311-cp311-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

pyitt-1.7.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (243.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (226.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-cp310-cp310-win_amd64.whl (52.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyitt-1.7.2-cp310-cp310-win32.whl (47.5 kB view details)

Uploaded CPython 3.10 Windows x86

pyitt-1.7.2-cp310-cp310-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pyitt-1.7.2-cp310-cp310-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

pyitt-1.7.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (241.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (225.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-cp39-cp39-win_amd64.whl (52.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyitt-1.7.2-cp39-cp39-win32.whl (47.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyitt-1.7.2-cp39-cp39-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyitt-1.7.2-cp39-cp39-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

pyitt-1.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (239.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (223.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyitt-1.7.2-cp38-cp38-win_amd64.whl (52.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyitt-1.7.2-cp38-cp38-win32.whl (47.5 kB view details)

Uploaded CPython 3.8 Windows x86

pyitt-1.7.2-cp38-cp38-musllinux_1_2_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pyitt-1.7.2-cp38-cp38-musllinux_1_2_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

pyitt-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (242.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyitt-1.7.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (225.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file pyitt-1.7.2.tar.gz.

File metadata

  • Download URL: pyitt-1.7.2.tar.gz
  • Upload date:
  • Size: 106.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2.tar.gz
Algorithm Hash digest
SHA256 ef2e077a9060171f2155e1dc1fa62d4b4f4fb3079daf457a44fd4990a5232cda
MD5 9dfdc3a09c17d741a0dd300fd3f40b03
BLAKE2b-256 aa8994046cc19186ddaeb2297f7ec1602f31dbf5184d4b1b3add66038495bb0c

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 39f9e9d07b5fefff75c44a04aecdf74e4877f901f40d1988fff52894e3313e6b
MD5 ee88eaef4ebb6e86ae19126ea42117be
BLAKE2b-256 d30cb402ebef1e63884cf6bee4fa399d6b98f1d00a615a0f24e5610857765400

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b23f323f495a28017fa2d7264c9c096fb7f7d480bb543c8d566908344f42d3d1
MD5 1a708335032db91546b9b36b0b583f7a
BLAKE2b-256 3ee7297b3a7d1a8c4217ef18c82e485f5019ac92ccd9b902cf56581925524d94

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eaa19b0d846b7e03a5b925a6d90fbd2a1397a4498497863b33a0b12e8f0ec100
MD5 7a227319675b05558f9c5388e0068625
BLAKE2b-256 b4e2c7744c3b5daf5087b6509e9735c98234b9ae3ec24685065ae2a9409b2e93

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d8d0b10d8e644eafd877b771941d29dc293ee3bce0d09fc1a83c47c4a4e0fbda
MD5 2a02c7060f3fd946572d55bd0d96b099
BLAKE2b-256 b6293597010ba16095f632cee41c78931c09790d6907753904bf7342abb1f9ac

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7efd7009c70c2bb384f8ba99a1122d70c24d0c396378de67817815ebc37e057a
MD5 0727c08e3653e599771dd2f6a4ca2de3
BLAKE2b-256 14cb0aa61f19aca7c85d68483f743b4ca3fd52b1aeeb26a0ff54fca459beba82

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 34d2dbf8de68441fd7c05959a7ed63c00725134ac5b03003003778ad180a120c
MD5 e473c34b89f242bcb9ff72e5de3168dd
BLAKE2b-256 dfdba260384c79e5be91f9b16e0f5d00aac14a95584eea995a7c0f7bf70520ec

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2dfca9aa927be3d83b6ac69745603a9088341c8bfe9ac43dc5379798de7e875f
MD5 c8d169a5693ef9ef8e320411b35f1f40
BLAKE2b-256 8152e1f706acbe423464f0bbc57b4afa18e0def9f05ca436bb3fe4838fa94564

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 4deeda04f79af11879b1cf0568309aa98ef931653cf67e7b8a488c3339f9633e
MD5 234a72240332b63edcaf1166dddfe370
BLAKE2b-256 f7182c517b40d0a1b4a410a72428b87ce2b417ea6dee46ca1aea6e508e4dd5d5

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4e0cedbcc4e160c031257e2a8db50ef9a66fc0411fbc2be165495e597c055b63
MD5 b27c25ff0230a3b9e79fce1aaf4491ec
BLAKE2b-256 78b9ff00b98020a9b5c7e2c61e38167d43f43819990f9bb7ab1db4b283e7f354

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0c4ff129ba42fd2065b0ee9697bfdae3430f601c8b57a0bd03c2627c50ffe0f5
MD5 820ebb52fc08163733feaf95a3f0af46
BLAKE2b-256 1772fabfa481e44e68582d9f3059d99026d9e807522478d990c99ceeaa9bdb6c

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c22d5a284aa280b39521ce795418c1ddee7afb9cab0788eecffd64f6ddae68e5
MD5 b2f145ed12395e5067840148daf07462
BLAKE2b-256 97be33e52bf37d42c1021ccd548c43ca60653eae5615eeca8b31a2a26a3d557b

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bac905f8a2309a9cf4b1534f44e1f18adda30a168dfeeb60199aa0a4e12d4b99
MD5 ff6606ad0622cf7c0116faa400b5bd84
BLAKE2b-256 0d65c411a39082220e5ae7782509779b39dbadfe37fe7031e9ce11e383e8f1dc

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 394d8873a75da8489d46131f0e3ed9b3b354263d89f18725956aa31c63a9dfd0
MD5 5715b8d6d9d3c8b2e48210425e3e0b03
BLAKE2b-256 3ca0ac045effe52baa7dcf83413febddc248761c1905260076d04be3503182e4

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 44faff1423a8ee346037212511635b5361968d30a901610b09680fda23fa4fe4
MD5 742be24b2268e0a80b2c25ab90184a10
BLAKE2b-256 af5cd7dc29e547bdacf7cce444dc85e1453dc4dab52ef472e110555b58a6e346

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4f8ab852ef35dbbeca32f6db38c782d3828596ac92e192d7b1e5766cd47f0239
MD5 ee0910dd437ddeae1cddd56bd473eae3
BLAKE2b-256 8f510525d290bf19b5af9361002c3751bc835f0e30d29bd07b8b2d37283d2d8a

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 78e7883503cb7e78fb9ace77709f407c3c2f742e1b214fa43a9f856dffa3791a
MD5 f3021fc7e88d72df95d57fc9083d6df8
BLAKE2b-256 a2de073777ce440bafb59d6a4c7a2db03c1ad4d831889e0e3429bea3cfe2a7d9

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5de6b2eba6542e880c0c188bfcd995bc0a6a4656dd12d47c5929c605a3d0d99d
MD5 a31db63238179507283afa05e30030bb
BLAKE2b-256 f3663d24776a999ce108805e66fc9d732ef6a99a16a72a721cf0e899bdd83a84

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a8d663ee938930bca4ee461f80655e73a4a7a9bcecd7fc9006f08670d335c2e6
MD5 ef82e4f3a5e1393ed7e425aaddfe409c
BLAKE2b-256 55b4f83317c8a36294726ff1ae785a2b9c43325094806aa72847744b2e60b703

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 876f7059470ceb2a0290ad83182fdf76b80a65dcc8bb0fb3667d4c12dbbe4c1f
MD5 0891e6644e02805ba185abfffd19bc15
BLAKE2b-256 c0eafc5ee6241ca474507ea7fa7715fbc8505f142092225a0f1469e033904a12

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6c1e0bed507e7283c8a63799eced4b4c981fda26e2dcbb0af43f0bc6833f9b0f
MD5 d9cb5243365c842fc78ca3483d1efd8b
BLAKE2b-256 6a277860bc687e36634a9ac7795f233cad8238b308dac73cc23856a028c6aed0

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5dc635caf90dfcea975c72a10570dcebefe82f1044bb4515932428a6da982970
MD5 6eb95f94a45aae788cb3e1d4d7efa1f1
BLAKE2b-256 d196b97ecf71121cf71a6b73c17aed5ae24f4b7bfe531c02bd30cd0ef5741e7d

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b1a09d9a28c73350377ad9c2d16a5e3c3cb163ce30e10e778670c3bd8a0e7cbf
MD5 6991997b22735be26f0eae04da7aa449
BLAKE2b-256 17a0d4c9252dc5b7d8c0c49bcaee44705ba7c57e4a65e6ba3a618ab2404fbef4

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7ecf8ebac73d12b04b4e45f7100c53342e25d62557cdb03665737f93b8532d6
MD5 fc9f65a91f2b658566c950675fab28f3
BLAKE2b-256 68687867573755e115c8da538334a05f3adc535915cb02d580cd670c19c11768

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e8e3ea507998d5e1ecac4b6af4adf268640d0d02518e261bf7072e2dca35fc8
MD5 5302847fe55aaae503cf036825f51f45
BLAKE2b-256 7d6452ce09e1fc8f339923881cbaae9bd04c6d6c6e94e4c9c3610736a611b473

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d31bba273b1859f354303c3f850174151fbc008b797e6a0921a679317fc1ca07
MD5 a4759d35096a6a13f4e4ae8c66230327
BLAKE2b-256 26c84622c7dfeb234a04e7b13bdbfcefd416e99b63b7a333f600f89440f75edb

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e9d65364905065aa9ccbefee5b990d688f1db8582520032c11bb4ccc4bc63d13
MD5 833805b67c04df2936902b01f9a49e35
BLAKE2b-256 19983b35e7452457361f990579bcd2cc05614a059aa2dbd0b89c93d19b31d49c

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c3fd348616354d8d19cba26aadfe0f7ae070ca99cc8c2755a710680828f017a9
MD5 e6c7234054cb465baf208e9b4c6c0a0d
BLAKE2b-256 39de0bfa4d6d5dfb5c7789875f85c95c4302241b61183d16a0508d6462d9de23

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f011492e4c5474529a6310bbe0a0d50e304f6931721f7989266bff3b1d481682
MD5 ce2467cf0731728b29378b9f29615d05
BLAKE2b-256 f9374a70b7cd6b867833a26c635eda5fef1b38bd4102a91322810baaf084e73c

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c4a15b9d2fe373b343eb390e7bd5bc8fd61472612a2c541ec06dae0ae629420
MD5 e63c0543ce2fa19bb796e437a8e82b79
BLAKE2b-256 af6053fa8058fa50e02a720b09364aaa4ca64ed23b1485170f307d0f77a5bf8f

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8bec00c066356677dcc02ce8ce998eaf7fd12a72765e1b9e58863552bfd1b34a
MD5 7e95971d92d495aaa079f814a871468e
BLAKE2b-256 0e791a63131bdc7148f6d4efde87e90ac611543bf9ede873f4ba2f8419719cca

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 52.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 36b1e1e629ca1697cd5c61bd571259f906234df315b4167758db573a2799dfbf
MD5 46a221dd66ce71689c9ce2292bb35dca
BLAKE2b-256 fb4155b8234446d3a35b44306ac2404b717d58c3fcd6839e5e8bb179cf650f08

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 59f60274761993a97a017737e652712d3fd4d8d1299044a35038b2e37a051620
MD5 013461a3753b9418cbe7487f1f35fe8d
BLAKE2b-256 9585aa71dcb080bd1e5ae8b103a5c99c6cddd29edd1cf17b383a7f3c5eb2612f

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6a304ac5e0da5d2c68684801f67d65e835f72f3ca0c685cc7770352a7df966e4
MD5 03ef30eff5f0112aa20ba1ef8f497c39
BLAKE2b-256 8d3c4b6c8248fd9ceadf45919f72a2035c563ac0df767e5bfe2bfbc8eaa09ef4

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4322824dbf4cb127416b5fc61280f77c558c5809d4966579c35f9b9cac0fe607
MD5 dc3efeb5999bd1ba1e7b049d8f3b4702
BLAKE2b-256 3f38f8a7688e398bb63d12f82d004a1f31da9d66fd5c84be45441c876356a2c0

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f874c30dcc7692ecc835e35987fc2ad33539a04e0c1e61600f6ec001010797e
MD5 e2311ddbc8d0726192c85dbbc7dbb6eb
BLAKE2b-256 b1274d1e092525f8f75d520f00f26760498ecb4aa41ba866fe87f8578916dfa0

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f54856f8997f5848a246ab380d58ed1e1bdb14a6b5956ee6e2fa2979c9dd6458
MD5 578167cbd6864525fe6bebe42a46f833
BLAKE2b-256 d4211f8d4a3b06eb3b0292525d8e502150abd001c944251ab772fe29fac0f751

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 52.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7f953d817108282fb034a4f1a10972492e9be248190282b373eac5f772f6496d
MD5 7d9a913adc409d5c1a8c1949151b416d
BLAKE2b-256 df006bab10ac6d1a83983f260b5e61a8c7e1c0f0596b56c7a19ea81dd4a188da

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyitt-1.7.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyitt-1.7.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 282023942c4e6f07a91e48115e7e832eecb7e6e710642c3477869f29318f65e2
MD5 81123d26b8ed62cda1f4c2d5234469aa
BLAKE2b-256 c382b2956ed44da00a70202d7e6869c27a7252093c150d7f4d67cca098b80964

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 519d2e8786ea46e4f1b743168c0558975d662abf48215ebe88ad0c8ea3193760
MD5 4750fcbda2369ff9bef7458ffc3e2d79
BLAKE2b-256 d12baeb70dd97e693349afe7651be1c45f7b31fa5c11071245a8136851002db6

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e610adc2f6d84790a3a5f35198bdd1c9ff4a0e8c81b5c93192dcd244b5f201a2
MD5 42f633e3763131693a2b93311a330902
BLAKE2b-256 a1619f04b2f5f77a6e3dca58619a6c938cdead7fc243cc615e75f5b7efdba4e7

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62f94c7cf5bd6de194f459bc90a4f1df8a8e9eb0ebf6eb915f1ababa5a64bfa1
MD5 7b92f36cb83911d8ca818b8c6fded182
BLAKE2b-256 ab897821bd45dd5b850986907659f1d2e1b6fa38f170bbc06362796d3c683f68

See more details on using hashes here.

File details

Details for the file pyitt-1.7.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyitt-1.7.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 52f42c329fc3203775f5a71068b35b99d16c833b200edc79592257ee6312f609
MD5 357dfff1a12a850504834e2a02f052ff
BLAKE2b-256 fd595bb3202492c1824610bf39eb8cc4c3af6ab393cb832a7c8c65449c337955

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page