Skip to main content

Python wrapper for TNT (Tree analysis using New Technology) implied weighting with clades support

Project description

Installation

  1. Pip:

$ pip install pyiwe

*.whl file from PyPi does not include terminal TNT. To install it, open python in terminal mode and import pyiwe package.

$ python
$ >>> import pyiwe
  1. From source:

$ git clone git@github.com:alexander-pv/pyiwe.git && cd pyiwe
$ pip install .

Terminal TNT will be installed automatically.

Tutorial

  • implied_weighting_theory.ipynb, theory behind implied weighting with fitting functions plots to play;

  • pyiwe_example.ipynb, examples of reading TNT trees, plotting trees, getting branch supports and concavity values distributions for each clade in a tree based on TNT feature matrices;

  • pyiwe_runner.py, terminal-based example for a quick start;

Run pyiwe_runner.py to see arguments help:

$ cd ./pyiwe/tutorials && python pyiwe_runner.py -h
Argument parser for pyiwe_runner.py

positional arguments:
  feat_matrix           str, path to the feature matrix for TNT

optional arguments:
  -h, --help            show this help message and exit
  -k_start k_start      float, minimum value in a linear scale or a degree in a logarithmic scale, default=1e-2
  -k_stop k_stop        float, maximum value in a linear scale or a degree in a logarithmic scale, default=1.5
  -k_num k_num          int, number of samples to generate, default=100
  -k_scale k_scale      str, scale of concavity values, `log` or `linear`, default=`log`
  -n_runs n_runs        int, the number of repeated IW runs, default=3
  -cutoff cutoff        float, cutoff value between 0.0 and 1.0 for a final majority rule tree, default=0.5
  -xmult_hits xmult_hits
                        int, produce N hits to the best length and stop, default=5
  -xmult_level xmult_level
                        int, set level of search (0-10). Use 0-2 for easy data, default=3
  -xmult_drift xmult_drift
                        int, cycles of drifting;, default=5
  -hold hold            int, a tree buffer to keep up to specified number of trees, default=500
  -output_folder output_folder
                        str, path to store data, default=./output
  -log_base log_base    float, base for calculating a log space for concavity constants, default=10.0
  -float_prec float_prec
                        int, Floating point calculations precision, default=5
  -tnt_seed tnt_seed    str, random seed properties for TNT, default=`1`
  -seed seed            str, random seed for Python numpy, default=42
  -tnt_echo tnt_echo    str, `=`, echo each command, `-`, don`t echo, default=`-`
  -memory memory        float, Memory to be used by macro language, in KB, default=10240
  -c                    bool, clear temp *.tre files in output folder after processing
  -v                    bool, add processing verbosity

Basic example:

$ cd ./pyiwe/tutorials
$ python pyiwe_runner.py ../pyiwe/tests/testdata/bryocorini/SI_4_Bryocorinae_matrix.tnt -c

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyiwe-0.0.1.tar.gz (18.6 kB view details)

Uploaded Source

File details

Details for the file pyiwe-0.0.1.tar.gz.

File metadata

  • Download URL: pyiwe-0.0.1.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pyiwe-0.0.1.tar.gz
Algorithm Hash digest
SHA256 6028284cfca77ee23dc7a650433b57bc39214ab17f596579293d31c216eadc35
MD5 7b9bde18a3424d47bfa4fa8e3670a8e1
BLAKE2b-256 274feaf677912f5f56119e46b4c1eec374661468cbbf5d1f18dd2dc5c492eed8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page