Python wrapper for TNT (Tree analysis using New Technology) implied weighting with clades support
Project description
Installation
Pip:
$ pip install pyiwe
conda:
$ conda install -c anaconda -c conda-forge -c alexander-pv pyiwe
From source:
$ git clone git@github.com:alexander-pv/pyiwe.git && cd pyiwe
$ pip install .
Terminal TNT will be installed automatically.
The package file from PyPi or conda does not include terminal TNT. To install it, open python in terminal mode and import pyiwe package.
$ python
$ >>> import pyiwe
Tutorial
implied_weighting_theory.ipynb, theory behind implied weighting with fitting functions plots to play;
pyiwe_example.ipynb, examples of reading TNT trees, plotting trees, getting branch supports and concavity values distributions for each clade in a tree based on TNT feature matrices;
pyiwe_runner.py, terminal-based example for a quick start;
Run pyiwe_runner.py to see arguments help:
$ cd ./pyiwe/tutorial && python pyiwe_runner.py -h
Argument parser for pyiwe_runner.py positional arguments: feat_matrix str, path to the feature matrix for TNT optional arguments: -h, --help show this help message and exit -k_start k_start float, minimum value in a linear scale or a degree in a logarithmic scale, default=1e-2 -k_stop k_stop float, maximum value in a linear scale or a degree in a logarithmic scale, default=1.5 -k_num k_num int, number of samples to generate, default=100 -k_scale k_scale str, scale of concavity values, `log` or `linear`, default=`log` -n_runs n_runs int, the number of repeated IW runs, default=3 -cutoff cutoff float, cutoff value between 0.0 and 1.0 for a final majority rule tree, default=0.5 -xmult_hits xmult_hits int, produce N hits to the best length and stop, default=5 -xmult_level xmult_level int, set level of search (0-10). Use 0-2 for easy data, default=3 -xmult_drift xmult_drift int, cycles of drifting;, default=5 -hold hold int, a tree buffer to keep up to specified number of trees, default=500 -output_folder output_folder str, path to store data, default=./output -log_base log_base float, base for calculating a log space for concavity constants, default=10.0 -float_prec float_prec int, Floating point calculations precision, default=5 -tnt_seed tnt_seed str, random seed properties for TNT, default=`1` -seed seed str, random seed for Python numpy, default=42 -tnt_echo tnt_echo str, `=`, echo each command, `-`, don`t echo, default=`-` -memory memory float, Memory to be used by macro language, in KB, default=10240 -c bool, clear temp *.tre files in output folder after processing -v bool, add processing verbosity
Basic example:
$ cd ./pyiwe/tutorial
$ python pyiwe_runner.py ../pyiwe/tests/testdata/bryocorini/SI_4_Bryocorinae_matrix.tnt -c
References
TNT source: http://www.lillo.org.ar/phylogeny/tnt (Goloboff, Farris, & Nixon, 2003)
Biopython: https://biopython.org
ETE, Python Environment for Tree Exploration: http://etetoolkit.org
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file pyiwe-0.0.8.post2-py3-none-any.whl
.
File metadata
- Download URL: pyiwe-0.0.8.post2-py3-none-any.whl
- Upload date:
- Size: 20.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4bc1aea47a26d8103427961e3586f1fbd17d1045dd9f0ae8196a7f01ccbdf2e5 |
|
MD5 | e693e74dd9c54e4f1cf62592315afa81 |
|
BLAKE2b-256 | 82bbe160cab54426c0286f52955a5a3a1144d7c0a22676eb6926993642e478fd |