Skip to main content

Python library for JABI (Just Another Bridge Interface)

Project description

JABI

JABI (Just Another Bridge Interface) makes creating and deploying bridge devices that provide RPC to common microcontroller peripherals simple.

Architecture

Interfaces are the available methods by which a single client may connect. Multiple interfaces running concurrently is supported. The following interfaces are currently supported.

  • USB
  • UART

Microcontroller peripherals are made available over each interface via a custom basic RPC. Each interface listens for request packets and dispatches them to the appropriate peripheral. Multiple instances of each peripheral type is supported. The following peripherals are currently supported.

  • Metadata
  • CAN (FD)
  • LIN
  • SPI controller
  • I2C controller
  • UART
  • GPIO
  • PWM
  • ADC
  • DAC

Clients connect to the microcontroller over any one of the interfaces. The following clients are supported.

  • C++
  • Python - pip install pyjabi
  • gRPC
  • Rust - cargo add jabi

Setup

Firmware

Follow Zephyr's Getting Started Guide to get dependencies installed. Then create a new workspace using this repo. We'll create it under jabi, but you can use whatever you want.

west init -m https://github.com/dragonlock2/JABI.git jabi
cd jabi && west update

To port any board, you'll need the following. See firmware/boards for examples.

  • Zephyr board definition. See Zephyr's Board Porting Guide for help.
  • firmware/boards/<board>.conf - enable device drivers and any desired settings
  • firmware/boards/<board>.overlay - selects available interfaces and peripherals

Now compile and flash the firmware.

west build -b <board>
west flash

Dependencies

If you want to build from source, you may need to install a few dependencies.

  • macOS
    • brew install git cmake autoconf automake libtool libusb grpc openssl
  • Linux
    • apt install git cmake autotools-dev autoconf libtool libusb-1.0-0-dev libssl-dev
    • Install grpc from source.
  • Windows
  • Windows (MSYS2/MinGW) (experimental)
    • Install MSYS2 to install the following packages.
    • pacman -S mingw-w64-ucrt-x86_64-gcc git mingw-w64-ucrt-x86_64-cmake mingw-w64-ucrt-x86_64-autotools mingw-w64-ucrt-x86_64-libusb mingw-w64-ucrt-x86_64-grpc
      • If you're not on x86_64, your exact package names may be different.

C++

C++ support is provided as a CMake library and can be added to any CMake project using add_subdirectory. An example project is in examples/cpp.

Python

A Python library is published on PyPI. For the latest changes, it can be built and installed locally by running the following. An example using it is in examples/python.

pip install clients/python

gRPC

Protobuf definitions are located in jabi.proto. grpc-server is a reference server implementation that bridges one device to a network and can handle parallel requests. It provides various arguments for selecting the desired device. An example client is in examples/grpc-client.

Rust

A Rust crate is published on crates.io. For the latest changes, it can be added locally. An example project is in examples/rust.

TODO

The following gRPC clients.

  • Google Flutter cross-platform app

Fun things to look into one day.

  • Better documentation...
  • Unit testing...
  • Alternative functions for pins
  • Move to Thrift for RPC (natively supported in Zephyr!)
    • Network (Ethernet, WiFi) support
  • BLE support
  • USB Linux drivers to show up under /dev
  • USB HS dev board for comparable performance to STLINK-V3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyjabi-0.1.1.tar.gz (382.0 kB view details)

Uploaded Source

Built Distributions

pyjabi-0.1.1-pp310-pypy310_pp73-win_amd64.whl (183.8 kB view details)

Uploaded PyPy Windows x86-64

pyjabi-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (401.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyjabi-0.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (395.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyjabi-0.1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (220.0 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pyjabi-0.1.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (232.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyjabi-0.1.1-pp39-pypy39_pp73-win_amd64.whl (183.9 kB view details)

Uploaded PyPy Windows x86-64

pyjabi-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (401.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyjabi-0.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (395.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyjabi-0.1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (219.9 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pyjabi-0.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (231.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyjabi-0.1.1-cp312-cp312-win_amd64.whl (184.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyjabi-0.1.1-cp312-cp312-win32.whl (151.5 kB view details)

Uploaded CPython 3.12 Windows x86

pyjabi-0.1.1-cp312-cp312-musllinux_1_1_x86_64.whl (920.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyjabi-0.1.1-cp312-cp312-musllinux_1_1_i686.whl (964.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyjabi-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (416.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyjabi-0.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (409.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyjabi-0.1.1-cp312-cp312-macosx_11_0_arm64.whl (220.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyjabi-0.1.1-cp312-cp312-macosx_10_9_x86_64.whl (230.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyjabi-0.1.1-cp311-cp311-win_amd64.whl (184.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyjabi-0.1.1-cp311-cp311-win32.whl (152.8 kB view details)

Uploaded CPython 3.11 Windows x86

pyjabi-0.1.1-cp311-cp311-musllinux_1_1_x86_64.whl (923.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyjabi-0.1.1-cp311-cp311-musllinux_1_1_i686.whl (967.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyjabi-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (416.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyjabi-0.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (411.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyjabi-0.1.1-cp311-cp311-macosx_11_0_arm64.whl (220.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyjabi-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl (230.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyjabi-0.1.1-cp310-cp310-win_amd64.whl (184.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyjabi-0.1.1-cp310-cp310-win32.whl (152.2 kB view details)

Uploaded CPython 3.10 Windows x86

pyjabi-0.1.1-cp310-cp310-musllinux_1_1_x86_64.whl (920.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyjabi-0.1.1-cp310-cp310-musllinux_1_1_i686.whl (966.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyjabi-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (415.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyjabi-0.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (409.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyjabi-0.1.1-cp310-cp310-macosx_11_0_arm64.whl (219.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyjabi-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl (228.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyjabi-0.1.1-cp39-cp39-win_amd64.whl (179.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyjabi-0.1.1-cp39-cp39-win32.whl (152.4 kB view details)

Uploaded CPython 3.9 Windows x86

pyjabi-0.1.1-cp39-cp39-musllinux_1_1_x86_64.whl (921.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyjabi-0.1.1-cp39-cp39-musllinux_1_1_i686.whl (966.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyjabi-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (415.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyjabi-0.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (410.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyjabi-0.1.1-cp39-cp39-macosx_11_0_arm64.whl (219.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyjabi-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (228.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pyjabi-0.1.1.tar.gz.

File metadata

  • Download URL: pyjabi-0.1.1.tar.gz
  • Upload date:
  • Size: 382.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1.tar.gz
Algorithm Hash digest
SHA256 f94aaba1b49bdcf8556cbf4131759f94dcb4c0051e2e433647276c285dd287ae
MD5 4dcba78965dcc1aec6223cc023c164ac
BLAKE2b-256 553f2dbe841d21875a469ce458e001e6af46a5d52092f0d3de9ce25665f124c6

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 225353cdc7fcec6444bc932263d4a3661a38baf916844ffd6b7d7010ce3351cb
MD5 5aac5e16f384e1f2985d8685f1c50606
BLAKE2b-256 fabb8bd30f28fff010a2fda6b854147880fe9642a48bcdbb11dfd49be31abe08

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ade3c5adc892919bbc728ec6fd15fbc77aadc7e6e292421ddcc2e4957217078f
MD5 7ca79c2cb3878d02a10635ce7d87eaba
BLAKE2b-256 68d5e5b68a542e0e9787ab63c872bd43add1d187b48398c6c7bfc305ef32f67b

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 df8e627ba34fbd635cf53d582a8b50bec346bba11ecd43646a7e26352deb2eae
MD5 0542665286a1de60af29e587d48316b3
BLAKE2b-256 1bbae1788a6fdb31f1f35c07fe6646ba0e79d5ae40f58de2761e686c5e7e4b36

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0f19f52cf597560d7084d5c4de6e95e3a08edf4ec437caa34683b73e7bfb61f
MD5 dddf511f1734fdc578617bf4e485a20b
BLAKE2b-256 92fe520f19f31339657ae511c63b76d4a07b314f4a03b5a14860353094cdf78a

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07ce6418884fe573fba09dc91c3ac61e3fbcce4feedf25d502a974149ff5e808
MD5 2b5506cd96e943e59666f291e9be38e7
BLAKE2b-256 17593eefa4a187105720bfc1370cbd6e6da8b9eafcf03eb0c2ad278c4f60defa

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4c66cc653cac3ca33c880511ed6b3eba63697062a6c887939280c9a922a1d746
MD5 64a69fd33e4874475c7c04557f8c9aef
BLAKE2b-256 227673334292382e1d00a26ff23a19621403984f9dfbfab043c78ba465a45c61

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 314444bd4bdfb7627de97a19474f2d3174654aec34398f03907c02efbed5ead3
MD5 0389feb61c3333dbcf22c24efbf57e3a
BLAKE2b-256 6bb537dc251cac1dd0ffc2a627b852cdb1e75e400af0ed17a1955d6119c0b705

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcaedb18d028439403600405599ba504efdb4ae6a879d196da54eaa3c9a9cc15
MD5 ac982997635cbc54a52c68f9dcfad3b1
BLAKE2b-256 755d851f0e2f383c729a8e9a554ea2bb13be1d4e2edcfb0e3a1f1201a4e296f0

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2cecd2467879fd3537caa136be258c47705ea90e33c91f9aa2bdd55add5f36bc
MD5 857de06cec3379d154fc67b6da391a2f
BLAKE2b-256 f9fec150014280363d5c6a9aebae8ce88fa63682a16d7cfe1b9bd0f7642f1be1

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73962b55c8255bc9dd1c51cc3fad719c870c78ed86c9ed68e7e37e5b17fcce59
MD5 d0177873a61fd44d56ba0e20c04c895f
BLAKE2b-256 2f6b73a2da3d9a5d34145e269d3feffdf784291c09e5d8b9ad4b8cedcc29c84e

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 184.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2852bb3cee30b4bf414934e3376a080dd60748b9fabe3242f4b3549b1a52114d
MD5 d846aee6195a196c0d90e91a846e5284
BLAKE2b-256 5f9886d3b0aa8575f3ada02a06d00b03dd485e5b21ec9b82bfb54759b7c408e6

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 16e217d8b57e6460fc7c5720ac437fa0384ffbf7e153615a9a1242b0bacc96e5
MD5 0fa361e833cb39d869feadf78c63dc0c
BLAKE2b-256 d2452d1b05fe157b6ed7c792b65c639825d648e2a16287b0f123869aea91bf88

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8c13f9227816a48f02d1557cbebca2f0cb70cf5f4744691408fb9b34cd73c7e8
MD5 c56ca839d33c19a4ed81fba1500f6703
BLAKE2b-256 eeb8aacb2fc8c56b1167c31ca4d246eba23c837634d6b80c2f680569dc2be82b

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bee75ba0cdd9b8e2df7bad34aa1497a4133b6cb2eb362171868d73797add3ff9
MD5 281c9fa48ecf064556275b54b8d92dfc
BLAKE2b-256 99ada4b9bc43f302b06c074dbf6d7c1253d0241ec21682f83796ef94f064d6b0

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcb8acd510f592f562577403b59b78a17f6b7c5697ea0e28ea1c2b7dce93a5ac
MD5 76c1521b5a72253e861032e8a860aa22
BLAKE2b-256 6f9b18b13e4e0c19167139ec564ba3642ddd5f38bc9c79106af9d8246be80090

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4d57f5631a15c663773deb1ff54b58ac9b6c5cc8dcfde1f08ce4a3e088c9ea98
MD5 c2341eb2d9395b24e8a5d75629fa2217
BLAKE2b-256 65388e51b25cc50711c0cefe08220af61b368cd8c4c61f2dc5ec95ddfdeb35b1

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 730382df05d3fc7c03a09d5aba5053d3dd88bfb8117ae37d3d80e574eab8e34a
MD5 0fb3a623b49cebb04e63e3e8675dc180
BLAKE2b-256 b51ae70a739410ecb85ada637e859b4d0de5d496316df6d1829ba6f316817681

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94b68428b4710da57b0010decf1c585199418a77859ee14aafa07a4e6f6be916
MD5 036253e160efd80c6477aa5d29b04e2d
BLAKE2b-256 00d6357ba793fd06ee067561ffce5492eed93b0b1beeb6a07deb1f8bacb834d2

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 184.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ede79fba956543170ba5f150d0340f2781eecee5858b39a2c38cd3b9269e7abf
MD5 800747aa5e3787a9f06e74af439f293b
BLAKE2b-256 ad756d283f95491016bae986f6a3dd22e52d33439671d6b890ef6eef743343b7

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 152.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c8932ed6467e8b8df29826b51f534f8839485fe76050d7bf66c89f0ed2e055fb
MD5 93b187d1210ab67a0ad65c8796a4fda6
BLAKE2b-256 324118aa5a9fe193ae5b7d9ec8eef8ef4b9488f742e1ed47c38968e91d5507f8

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e2ab4785dd2d602b7e031a5b12f82f256e02dcf97b95147379e457b1b099c32c
MD5 68a593feecce72cb721e99d9fd509816
BLAKE2b-256 ca190b4d7f81745cce74ebc02e64468632499f02754301e65c6808fc2f4f4497

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 87da82b9159c26ca96e1fc70a8346f2834bd538af9b2c9926eaff5cfd3e900d8
MD5 24bce41f41f96759aa2cdec409eaf15e
BLAKE2b-256 fd6208ba07f632344e53b7c3a627443b905cc581e1a6b4e70a60cfb75df228f0

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eccc799e377ec294a15903a8707a97f16a63b06b071f556b061cc2e5aa6eaa9e
MD5 6b890a0d87f25fc43f8f2bb8d671e59a
BLAKE2b-256 de232b479373a4644f5cbf1208aa03975e11f92e423cb04edaff25ee81acb8e5

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4638408e150c981e394a86fd1d072f4f260a0e6d870958ed3e9b263332a23453
MD5 d8e8a9c31bac57f329e6d3dee9f1f740
BLAKE2b-256 e5f089f83a7a50b50934ea82dc6c504e958145a407353d508fff7638531a0350

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc6cca6ec834518294dd58bab1d8d811d8dc8fd1f04f83ccfc8273234d46a19f
MD5 462411999c0cfde9497515b6e1f85328
BLAKE2b-256 abe929d59c4245f95af21af15df4995fb62c5d222a18c953c1f788446f02962c

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e5ca4e11fe964fd8ea2eeddb54bab12aa38e4ad79dd53101e9377426876d6e8
MD5 fc6f83db330630fcb35068d98c8017ed
BLAKE2b-256 7f730e3d54fe76a30ffbb1a76e24b3ab03c0c06b4a263ac8ab8cb8759c9fff9d

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 184.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b5ccc913e652a9bdf0c4a24e176ce2ad19a5bb9d476e5336a11973b365d00130
MD5 a52ad91c58f63b9a924b66080b3fe280
BLAKE2b-256 ffa46c5723870d703a576e7db936cdd11088ea55828a1e6f5a3512b8f99503e8

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 152.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 66e81694241f94ee5f4725b92beaa5282cbb2fbd0669e966807ad975e87bee10
MD5 df79f7eee4f12d089f12f3bdf434993c
BLAKE2b-256 1da9db9d6fdd73870afe15afa10bbca303886761f98617aa6bece2c3e0c607d9

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 97f788a0cb433b3f579d3897df0eb3846ac8d9f8712e4509eb67c6dcae89aea0
MD5 e4999f0614e58f5a064f0abb963339e1
BLAKE2b-256 445a56e76c1216269abebd752a51e8569105ec76e1f6008dc28b30215f9b3903

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 82fec15625c19c8ef5777a197cc6075255256d95c59e0506450fe4fc3a05a92c
MD5 f18b23f56c6355e31e1f8f6b6c86b025
BLAKE2b-256 460f7f22f12bd172befec9f3d319d7184e780a1379843c881cf948b656861af7

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb40758eaaa80f0d8b897c4dc6099f42af739cc771fd0050b724c4dbefeccc4c
MD5 301e2745e10b42f77d15f8f46189766b
BLAKE2b-256 75750e04bf190e4d90902a3c1d3075dabc2461e8eadcc35dda3018e5c5d06f89

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71209313c2b732448f1200cda5b5dc99cd9e266e24be0505ff36e3b40aebc904
MD5 af4550aa1c1a2f4121a5aed150fe10f2
BLAKE2b-256 1bb6758b6ad88c4bd368e7f32bd85ac91071cddffec8205440832c91a1f0e6e9

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a110f8155dda1288b7c0c263f05fe29fcd50f7811dd95a0615d7b3cf8ff9ea5
MD5 2c0e6124bae0eb537f85c4cabab0c875
BLAKE2b-256 1fe5d914903e215edc0d7af5e3579df7d6ab6bf104f2afd1b4e84f227b6b23fa

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afeabd8c7c6e1cdd317d496c0ef1930ae88fd912665421b0d705c75ea7e07a6f
MD5 485a73ed3512020b96185d04fe62a79d
BLAKE2b-256 de3c41b0474879920bc0ea1a2c2c947c7143b7d9ad37fe38ef9dd166a1ed9354

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 179.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 95fbd30afe6d76fda4f1c846c546d093b66409886e84cbbd6ca10ef42efcfc2e
MD5 5087a9037e31a3504566aa4c576b8c7b
BLAKE2b-256 74bb871b13d6ef339b98e1b79f7b9888dcd33ebdd25a64b3e57612cc060f347c

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyjabi-0.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 152.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 484cd9a0b89255bd8ca7c528de6b80ad68a2b091e1702f56414f565e2d82fe56
MD5 c4e6194d8552d7da4d3d06cd199954a2
BLAKE2b-256 012691c8c5120899d7e7d37855de19789da65d96c79c281c4cdea4e9e5d08b72

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e9735afbce88c93a862583ca817882f0071164e97e602320dca08f48c5a7f91f
MD5 9b0566853bbd16bc45981b07608cc9f2
BLAKE2b-256 94a40d501034cb4ad58b68f817671811a6c9de83c7e04b21d28b6d25eac30a7b

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a9aa13d44360070ee7e49db1c6fc61ac1524e0f314b330b708610fff9bb5a8e3
MD5 72d72169abe4f3f0ea38a26129b2b1e5
BLAKE2b-256 358eca814247fd79eefa15acbbb8b3698eafd2aec945e08b5040560059e62fbd

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63f8a3bf743b50d70a9f1f39164b8290b10764b0906973a0f442d566ba358928
MD5 69335c9654bb52091c8c64c282b97bff
BLAKE2b-256 f4d4f50557d54e4e672252427f13de9305af903420aa83786b1885b303226849

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3428181ac700c2a044450eb28f7675bcf05b2f9ebcf61dcb7de6bd325af12302
MD5 3f14344fe7d3f431e6397d48c4f18edd
BLAKE2b-256 9cac18cc8ced9e2119fe6b446690acb245e6e6ee9c3ef5059a548c1522f74d7a

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0fe03bca8d0b109316e9aa56c7a3d20961cf908aa61a077d30449c15edb22c23
MD5 abd479e3bd9b8ab1b3a6602f5da183dc
BLAKE2b-256 a6552e1c1e2a9e8fc850d95b4751e33d1f3a5c6845f638ea56553e58a6624da3

See more details on using hashes here.

File details

Details for the file pyjabi-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjabi-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 972cecc92d50ee6919d7898e6134148618a4c71ba09a7cd195faf7bc494a1906
MD5 7e2d7beac496cf6ebf6bfdd4e6bdbe8d
BLAKE2b-256 bce88439b7f80d5c7c26fc8a6ee1f29142ff080c4f058733e02ee926d3b42927

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page