Skip to main content

A Python library for memory manipulation, code injection and function hooking

Project description

PyJectify logo

PyJectify

A Python library for memory manipulation, code injection and function hooking.

Quick start

PyJectify is available on PyPI.

Alternatively, you can download releases from GitHub or clone the project.

Documentation is available at https://petitoto.github.io/pyjectify/

Features

Windows (x86 & x86_64)

Core

  • Allocate / Free / Read / Write memory
  • Create threads
  • List loaded modules
  • PE parser
  • Use kernel32 or ntdll functions

Modules

  • MemScan: scan memory using regex patterns
  • Inject: load library, from disk (remote LoadLibrary) or from memory (fully map the DLL into the remote process)
  • Hook: set up inline hooks in the target process
  • PythonLib: embed python into a remote process (Python 3.6 - 3.11 supported)

Utils

  • Syscall: parse syscall codes from ntdll.dll (from the loaded library or from the disk), and produce a ntdll-like object which can be used by the core to use direct syscalls
  • ApiSetSchema: parse Windows ApiSet

Examples

Memory search & basic operations

import pyjectify

# Open notepad process (only the first found if multiple instances of notepad are running)
notepad = pyjectify.byName('Notepad.exe')[0]

# Use the pattern "secret( is)?: (.){10}", but encoded in utf-16-le because Notepad uses wchar_t
words = ['secret', ' is', ': ', '.']
pattern = b'%b(%b)?%b(%b){10}' % tuple(e.encode('utf-16-le') for e in words)

# Search for the secret in notepad's memory
addrs = notepad.memscan.scan(pattern)

# Process found addresses
for addr in addrs:
    secret = notepad.process.read(addr, 50).decode('utf-16-le')
    print('[+] Found secret:', secret)
    notepad.process.write(addr, ('*'*len(secret)).encode('utf-16-le')) # let's hide the secret!

# Reset memscan to perform a new search regardless of the previous scan
notepad.memscan.reset()

Python code injection

import pyjectify

# Open notepad process
notepad = pyjectify.byName('Notepad.exe')[0]

# Inject Python DLL
notepad.pythonlib.python_mod = notepad.inject.load_library("C:\\path\\to\\python-embed\\python311.dll")

# Run some Python code from notepad
notepad.pythonlib.initialize()
notepad.pythonlib.exec('import os; os.system("calc.exe")')

# Undo all initializations
notepad.pythonlib.finalize()

Setup an inline hook written in Python

import pyjectify

# Open notepad process & inject Python DLL
notepad = pyjectify.byName('Notepad.exe')[0]
notepad.pythonlib.python_mod = notepad.inject.load_library("C:\\path\\to\\python-embed\\python311.dll")
notepad.pythonlib.initialize()

# Let's hook GetClipboardData!
# Step 1: define our new function
pycode = """
import ctypes
def GetClipboardData(uFormat:ctypes.c_uint) -> ctypes.c_void_p:
  ctypes.windll.user32.MessageBoxW(0, "I hooked you :D", "MyNewGetClipboardData", 0)
  return o_GetClipboardData(uFormat)
"""
notepad.pythonlib.exec(pycode)

# Step 2: get original function address and setup a trampoline (of 15 bytes size)
user32 = notepad.process.get_module('user32.dll')
oaddr = user32.exports['GetClipboardData'] + user32.base_addr
trampoline_addr = notepad.hook.trampoline(oaddr, 15)

# Step 3: prepare Python function hooking, ie create o_GetClipboardData and get ou Python GetClipboardData address
hook_addr = notepad.pythonlib.prepare_hook('GetClipboardData', trampoline_addr)

# Step 4: inline hook
notepad.hook.inline(oaddr, hook_addr)

Advanced DLL injection

import pyjectify

# Open processes
proc1 = pyjectify.byName('proc1.exe')[0]
proc2 = pyjectify.byName('proc2.exe')[0]

# Extract a library from proc1's memory
module = proc1.process.get_module('module.dll')[0]

# Extract common syscalls from ntdll.dll and wrap them into a ntdll-like object
syscall = pyjectify.windows.Syscall()
syscall.get_common(from_disk=True)

# Use direct syscalls to operate on proc2 (memory read / write / protect, thread creation...)
proc2.process.ntdll = syscall

# Inject the module directly from memory into proc2, at a random location and without copying PE headers
proc2.inject.memory_loader(module, prefer_base_addr=False, copy_headers=False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyjectify-0.5.tar.gz (22.5 kB view details)

Uploaded Source

Built Distribution

pyjectify-0.5-py3-none-any.whl (25.2 kB view details)

Uploaded Python 3

File details

Details for the file pyjectify-0.5.tar.gz.

File metadata

  • Download URL: pyjectify-0.5.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pyjectify-0.5.tar.gz
Algorithm Hash digest
SHA256 d9d1af97f6ee366480a4b56251c8a67a738741ba9c9059640f0d6c50ddf25d9c
MD5 4b302637b0cbcb3ff3f49fa13cdba292
BLAKE2b-256 ea3d7f90c75e0eedcdbedb41ce52936be756e9ec1a28f93b909aedc69e695c97

See more details on using hashes here.

File details

Details for the file pyjectify-0.5-py3-none-any.whl.

File metadata

  • Download URL: pyjectify-0.5-py3-none-any.whl
  • Upload date:
  • Size: 25.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pyjectify-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 937e9fd49a8567fc7d4a2efa90fb22f62a2ffd12ab332241d0b7598e2e1e7bdc
MD5 c9fd90dfbd317f329cd128b4b9d07513
BLAKE2b-256 20ca94fb5beaffd90a0d1c81a63ee7adb8d05526900683f71d5800dddcefb888

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page