Skip to main content

JPEG-LS for Python via CharLS C++ Library

Project description

pyjpegls

Note
This is a fork of the original CharPyLS repository created to be able to add fixes and adaptions, as that repo is not maintained anymore. The rest of this file is unchanged from the original readme.

JPEG-LS for Python via CharLS C++ Library

I wrote this interface to enable easy access to the awesome JPEG-LS lossless image compression algorithm from within my Python application. I had no need to read/write anyone else's JPEG-LS image files, but rather I needed to compress some data structures internal to my application. This data was similar in nature to greyscale imagery such that it was an easy choice to leverage the existing CharLS C++ library I found on codeplex.com. I did eventually incorporate some basic file I/O functionality for my unit tests, and that's why I list Pillow below as a dependency.

I have tested this code on Windows 7 x64, Windows 8 x64, and Ubuntu x64. Note, even though this package has the odd name "CharPyLS", you will import it into your module as "jpeg_ls". Here is a quick example of using this tool to compress an image to a buffer in memory. For more details, check out the examples included within the source code.

    # Read in an image from an existing PNG file.
    fname_img = 'test/image.png'
    data_image = data_io.read_PIL(fname_img)

    # Compress image data to a sequence of bytes.
    data_buffer = jpeg_ls.encode(data_image)

    # Sizes.
    size_png = os.path.getsize(fname_img)
    print('Size of RGB 8-bit image data:  {:n}'.format(len(data_image.tostring())))
    print('Size of PNG encoded data file: {:n}'.format(size_png))
    print('Size of JPEG-LS encoded data:  {:n}'.format(len(data_buffer)))

    # Decompress.
    data_image_b = jpeg_ls.decode(data_buffer)

    # Compare.
    is_same = (data_image == data_image_b).all()
    print('Restored data is identical to original: {:s}'.format(str(is_same)))

The output generated by the above example should look like the following:

Size of RGB 8-bit image data:  5038848
Size of PNG encoded data file: 2409950
Size of JPEG-LS encoded data:  2088357
Restored data is identical to original: True

About JPEG-LS

  • From Wikipedia article: JPEG-LS (ISO-14495-1/ITU-T.87) is an accepted lossless image compression standard derived from the Hewlett Packard LOCO algorithm.
  • From CharLS codeplex site: CharLS is an optimized implementation of the JPEG-LS standard for lossless and near-lossless image compression. JPEG-LS is a low-complexity standard that matches JPEG 2000 compression ratios. In terms of speed, CharLS outperforms open source and commercial JPEG LS implementations.

Dependencies

  • Numpy
  • Cython (only for building and installing, not for everyday use)
  • Pillow (friendly fork of PIL, used here for file I/O with the example and during unit tests)
  • CharLS (source included as subfolder)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyjpegls-1.2.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

pyjpegls-1.2.0-cp312-cp312-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyjpegls-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyjpegls-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyjpegls-1.2.0-cp312-cp312-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyjpegls-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyjpegls-1.2.0-cp311-cp311-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyjpegls-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyjpegls-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyjpegls-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyjpegls-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyjpegls-1.2.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyjpegls-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyjpegls-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyjpegls-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyjpegls-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyjpegls-1.2.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyjpegls-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyjpegls-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyjpegls-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyjpegls-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyjpegls-1.2.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyjpegls-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyjpegls-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyjpegls-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyjpegls-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyjpegls-1.2.0.tar.gz.

File metadata

  • Download URL: pyjpegls-1.2.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyjpegls-1.2.0.tar.gz
Algorithm Hash digest
SHA256 ae63bbe825ba655150555510f18adedea6a4d006df35dd69d125f883d8015d8f
MD5 a7599e5a6d4e76144912e850b9c296da
BLAKE2b-256 76f57247db593f28a774c08c2f8fc2915bfb65848fdfb749f2179ae0b5cf5fd5

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyjpegls-1.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyjpegls-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 27487c283f21a4f2c995d78b4a2a2eb814a105a5aabcc7b9a89396ddd3340608
MD5 d0cc56e5658ad0d3cacffdbd2494a115
BLAKE2b-256 e7a66f33766f231330095f8ec316f8a02e1d376de1420768a8551b5537a2bd02

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e15e441be82374302759d2e15859d0dce0ecc7887f4a731d8b975410ceb69d8
MD5 fa337e104e5e45e92dc24453fe50dd27
BLAKE2b-256 d81297c6cd105558392af5fe286448eb65f97977c49e493a3c8e09fff5c28c96

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 67c690e359ba4714bf506dd9276c8f8d7bdb8a8899cda2e639f76f5153653c72
MD5 8a9e684a9e9017377d4f9363ccf3d3cc
BLAKE2b-256 f16ce93d2c18e77ecd6fb06e3f22ae61828343d1313360b1d3705854aed1237b

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7df5b7474c05db9f31dcc16f67469e45ecee731e288343af05bfb46cc5612baa
MD5 ea48ddbfe118022db4bce45e3f0e4593
BLAKE2b-256 f039a456fa499e17f69e3672c9821f43f48fa042a4dbbd4c9836f00bc99c8b0f

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e509bc0f983fcdee79dc4912f9e07ecc993dd4f8c064d1186a6a7e12daa965b
MD5 6ac589ed37195861bf030c97b2b5efff
BLAKE2b-256 2b4fccffbb5c7e74df0d683836bef4820bc73e26bdc7edaa22a45c1fd883dc40

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyjpegls-1.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyjpegls-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2adb885edea0c42ed9f05b79bb612b8846513ce1e8d3ed0d8022528478acdfc6
MD5 b0bc7fded6a10a6fd04536aab29ade4e
BLAKE2b-256 e9a23d02ff59389f0e00bb2fadcc66bccf37806abbf63a1c63d43279df28c101

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f0ff3c635bb84595e5096451f3e1fe1d5b734a66ddb7cefcc925d476bc1cac9
MD5 61f19141737304daa3aad931f501767e
BLAKE2b-256 1cc4cac76b2347d857141005e37a84877623576d28acdb8ede3b9348cdb68cdf

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5eef3a71aa64ff5f7d08973bde739ef2095e93dfcb9c7f5f9dc20cbb8991500e
MD5 1f134b75c58e244cc293e2c5ac311f8b
BLAKE2b-256 042fa38bb70e18ac128ea5bcd2c25ec378543e4645cd88e06f0a7bcfec79ef2f

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7fa72761f1bf7b96560fc907eb87ec2972cc366e0ce3559605e07d6527d5eb7f
MD5 4fa09151dec51c4a1b94d513fef0d799
BLAKE2b-256 8da8d9db31954b49fe8496397c86c1b57fef955f5aa9c7fd1d19c11e46861980

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 359a13f1288eb42eecd782f3734959ef7da1f42fc8a1e16bdc02a70d52bb560b
MD5 e9ec08bc1e23a45ba7551642fd66d3ab
BLAKE2b-256 a573bf1154483d95494a5ef0f5a205dce98f6c4cf459965632c1b48d2d563c8a

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyjpegls-1.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyjpegls-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5aec745227d9f536e63ea75ffe97f0f6fae8cbb51f43b7c8d0c7833d35106db9
MD5 2a86b6fae7541e9edc3132d3951f7933
BLAKE2b-256 da4d289b98d97bdbef42bdb2d906ae887130f8ef80c325fcd1934d3693723c4e

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20580c65e0e54fe666ccb6fcc5eb8cefdff780480ec1ebb2b9f9af98be971303
MD5 888f95923d841307a8273ad53d30006b
BLAKE2b-256 fd6f6b1ca7a026d9bdf4216ca9d794bacf82873f9ff225bb3de98e62d4b76d99

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c596c446bfe37a793d3458e1e604b1dd5355cc245f139186db3c114d67fc7e9b
MD5 fc935e58783c027000ce82370c61658a
BLAKE2b-256 91542d2c1a062383f8a5e4019d886368bcd613511da380b295fbe85e61055cb1

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 132e4009b5e4ee2185904ed1d659a47d9e54c785c74a7397b3ba191110fbb667
MD5 39234aeddd837337346c02f0c43528fe
BLAKE2b-256 9ef6c5d5b8846fa228f4c27b6334475101dd78d91791b4642551d6971f89799b

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a20fd77377c1b6c6e8cc12edec525b70f6f35a6555d3ce7aa01d8fb149b40f0b
MD5 6c65a2831e5bfd136bb687461cdc362b
BLAKE2b-256 b774b7a9491c5ec9111030454efb3c110eb91f804256d65b44db4b927c7bdd51

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyjpegls-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyjpegls-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6a7bd1744a54c79c4c5895003ff7522c5fe9793f490d5c5bb9ae9583170649e
MD5 4920829bc9f4a3318ac259910bef72ef
BLAKE2b-256 22a30d53c60691e8509caf1ebbe3ba83b3f416105562d57021c64181e285153c

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af2c3975a15a282ffed0b012aef02f710ee72180cb4a272574f540b1dcd7b9d9
MD5 ccd967b6294074ad95e9678832cb4800
BLAKE2b-256 b0fca5f0884f3320022ae305381f2b73e1c2ff184193aae47bfff3e39e5b265b

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c3b43e64841b1ef4fbaffa94226b0fe690684e72e5d45b30afdff82f5027e2a
MD5 7650e5f8e4cc2930ace9b50579a9322e
BLAKE2b-256 a69308740d722370872e0c2cb0d1e93de01e174e72dce54360ddc8001005fcbf

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44eb69d1c884c6003923125ada983f2bfaa18cea73da4a589e288a197f2f23bb
MD5 da86b2e4c7bde1e99c9532e0847fee4c
BLAKE2b-256 20c293020097164186af88e3bb556f467d0957e4b46a71d8ccbb7e7acb694275

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d29ae31f821f51b2cdc06b5a911dce988eefbd79996590eb08b9003d1657cf35
MD5 3617665364f1f333d4fc04a4424763e3
BLAKE2b-256 7047424681066c1708e202952b87ee86ef1153cf405e49001cce86d2e5a4cdf1

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyjpegls-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyjpegls-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3bf11a5a421b58a1b965bbe246081ca8a1b5951739cd21a84176b40b64058769
MD5 6235b6689f60dafeebbd31000c8cd829
BLAKE2b-256 307a005848ee8b32257e63def2003775e404c546040deb4a0a1c021e709ddd9c

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07bcd524ed52d2a4b07a5d133d94cd47ccf8b6454b7a0abf9c0a74bfa8de7d39
MD5 2382ff2da990b0e18f8bd62cb73fbea5
BLAKE2b-256 6f2c9af0ac5a02aa2e838de88c050f1817a080fe37793d5c27e5bce8e53a0c49

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 41a8048bb96c832c8ab9661067d3d5e47974b37b7dc9f92d8f365e0bfdc69080
MD5 52460d0241a1cff47dd39bb8d42dd376
BLAKE2b-256 e44750eeefa29d3287bd07db8dcaa4b7320cac5e3e10985fa3fe61ee8151b9ec

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef59136972426836f7ddc8322f68e7284dce476eb81e91face4becec4998c21e
MD5 e2e0fac03e7297501ec6446fe5e1df5d
BLAKE2b-256 463ffd8a0a37bd0314745bf6c5fb47f8fd98adbbc27856412286e07aa66151e3

See more details on using hashes here.

File details

Details for the file pyjpegls-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjpegls-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c0a7046f050db1d5c9d45020c71b966eef3c0bd84b4a8d5eb6390bd1a278c21
MD5 6a329dfe2f39b3700611a5406a2452d8
BLAKE2b-256 ab92e3f142110f8b149567f1b56cbead4dba8d0c426e52a5572ba467796bc3ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page